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.. 
ABSTRACT 

~o properties of the partial sums of random variables are investigated: the range and the maximum 
accumulated deficit. The relevance of this study follows from the f act that the range (or the adjusted range) 
is used in the design of storage capacities for full regulation of river discharges and the maximum accumulated 
deficit is used in the case of partial regulation. 

A general approach to the distribution of the range of partial sums of independent random variables is 
developed . Starting with discrete random variables, the distribution of the range is shown to follow from the 
theory of Markov chains, when the state space is such that the boundary states are absorbing. By analogy, the 
distribution of the range of partial sums of continuous, i ndependent random variables is obtained . Some results 
are given i n closed form, and others are obtained numerically. 

Similarly, a general approach to the distribution of the maximum accumulated deficit of partial sums of 
independent random variables is developed . Starting with discrete random variables, the distribution of the 
maximum accumulated deficit is shown to follow from the theory of Markov chains, when the state space is such 
that one boundary state is absorbing and the other is reflecting. By anal ogy, the distribution of the maximum 
accumulated deficit of partial sums of continuous, independent random variables is obtained. Some results are 
given in closed form, and others are obtained numerically. In particular, new asymptotic results are derived. 

The similarities between range and deficit analysis and Moran's theory of reservoirs arc pointed out and 
the theory exposed is ext ended to the case of seria lly corre lated random variables. 

Practical applications are discussed and a brief note on the so- called Hurst phenomenon is included. 

v 



Chapter I 

INTRODUCTION 

l. Preliminaries .· 

The theory of stochastic processes applied to the 
design and ope•ation of reservoirs has emerged in re­
cent years as one of the most dynamic topics of sta­
tistical hydrology. It has attracted engineers 
simply because the inherently stochastic nature of 
hydrological phenomena could not be ignored. It has 
attracted statisticians not only due to the extremely 
interesting mathematics involved but also because of 
the obvious relationships between this problem and 
other areas of statistical interest such as the theory 
of provisioning and the queuing theory . 

The growing world shortage of water resources, 
t he increased competitions between water used, and the 
technological advances of society in general drama­
tized the importance of the study ·of the theory of 
reservoirs. However, the problem is extremely com­
plex. rn dealing with annual streamflows , for in­
stance, the assumption of independence of events may 
be acceptable; however, in dealing with daily , weekly 
or monthly flows, the correlation structure is sig­
nificant. Furthermore, such stochastic processes are 
~p~ to be nonstation~ry due to seasonality. To al l 
these problems, the variabilty in water demand and the 
competiti0n between water used have to be added . 

A good way to illustrate the complexity of the 
problem is to approach it from a historical viewpoint . 
In order to do so, a few definitions are needed . 

Let Xi be a sequence of random variables, and 

s i • x1 + x2 + ••• + xi; i " 1 , 2, ... , n 

R=~1-m n n n (1.1) 

The random variable S. is called the cumulative 
l . 

or partial sum, Mn the maXlmum partial sum , mn the 

minimum partial sum and Rn the range of partial 

~urns (~ee Fig. 1.1). Tn this paper, ~In and mn are 

not called surplus and deficit, as in some other works 
on thi s subject, to avoid confusion with another con­
cept which will be introduced later. 

Another set of definitions follows when each 
component of the partial sum is adjusted for the sam-

ple mean X : 
n 

5~ • s. - ls 
1 1 n n 

m~ • mln(O, si, s; .... , S~) 

R* = M* - m* 
n n n 

(1. 2) 

The random variable Si is called t he adjusted 

partial sum, M~ the adjusted maximum partial sum , m~ 

the adjusted m1n1mum partial sum and 
adjusted range (see Fig . 1.2) . 

k 
n 

In this paper, the underlying random variabl e 
Xi will be referred to as net input, or simply input. 

Fig. 1.1. 

Fig. 1. 2. 

n 

Definition of the maximum partial sum 
(Mn) ' the minimum partial sum (mn) ' and 

the r ange (Rn). 

Definition of the adjusted partial sum 
(Si_), the adjusted maximum partial sum 

(M~)' the adjusted minimum partial sum 

(m~), and the adjusted range (R~). 

2. Brief llistorical Review of Storage Pr oblems 

The problem of the design of reservoirs was 
treated initially by W. Rippl {1883) . * Although the 
stochastic nature of river flows and water demands 
was ignored, Rippl's work is important because it 
introduced the concept of mass- curves as a tool to 
determine the st<>rage capacity required. 

*Name and/or date in parentheses refer to the author ' s 
name and date of publication given in the 
bibliography. 
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Later, A. Hazen (1914) published the first paper 
i n whi ch the problem was seen within the context of 
uneertainty. In this paper, data from several river 
s t a t ions were transformed to comparable values by 
"st:andardization." The result was the production of 
enough data to approach the problem from a probabilis­
tic viewpoint. Incidentally, in this paper Hazen pre­
sented his invention of the "probability paper," a 
well-known graphical tool used by statisticians and 
engineers. 

C. E. Sudler (1927) treated the problem of 
reservoir design by extending records of, say, 50 
years, into artificial records of 1000 years. The 
met hod consisted of writing the observed annual runoff 
values on cards , which '"ere shuffled and draw'll one by 
one, without replacement, until all cards were used. 
Following this pr ocedure twenty times, the artificial 
record was generated. The technique is obviously 
poor; for instance , the maximum and minimum values 
of the historical record are necessari ly the maximum 
and minimum values of the sample of size 1000. How­
ever, the importance of Sudler' s work derives from 
the fact that he was possible the first man in statis­
tical hydrology to use simulation methods . 

The next influential paper in this f ield was 
written by H. E. Hurst (1951). Using a modification of 
Rippl's idea of mass-curve, and an i mpressive quantity 
of long-term annual records, Hurst computed for each 
record the cumulative sums of the departures of the 
annual totals from the long-term mean. The storage 
requir ed to yield the average flow, each year , was 
t aken as the range from the maximum to the minimum of 
these cumulative totals (see definition of adjusted 
range in Fig. 1.2) . Hursc showed that the storage 
computed in t his manner, from long- term records of 

1 h . i 0. 729 h natura p enomena , was proport onal to n , w ere 
n is the length of the period of time . In the same 
paper Hurst found that the mean range when the "vari­
ation from the mean is distributed normally" is pro-

portional to n°·5 He concluded that although "the 
frequency characteristics of river discharges (in the 
investigations of Messrs. Hazen and Sudler) are 
assumed to bo like t hose of random events: this is 
only an approximation " in cases i n which storage over 
long periods of time is concerned." The apparent 
departure from the square-root l aw found in this paper 
became later known as the "Hurst phenomenon." 

Subsequently W. Feller (1951) , whose at tention 
had been cal l~d to Hurst's paper, attacked the prob lem 
using the theory of Brownian motion, in a sophistica­
ted and much celebrated paper. He found the asymptot­
ic distribution of the range and adjust ed range of 
partial sUms of independent random variables, and con­
sequently the asymptotic moments . It was then made 
clear that because the. partial sums of independent 
random variables Xi with finite variance are asymp-

totically normally distributed, the asympt otic distri­
but ions of the range and adjusted range are indepen­
dent of the distribution of t he random variable X . . 

l 
Fel ler mentioned that the Hurst phenomenon could con­
ceivably be explained starting from the assumption 
that the variables Xi are not independent. Inci-

dentally , Feller's results were derived under the 
aduitional assumption that the mean value of the ran­
dom variable Xi was zero , which is relevant only in 

tl•nns of the unadjusted range. 

,. 

2 

Later, P.A. P. Moran (1954) initiated a new l ine 
of research. Instead of studying simply the proper ­
ties of partial ~urns in order to devel op ideas about 
the convenient size of the reservoir, ~loran s tudied 
the influence of the inflow and various operation 
policie~ in the distribution of the amount of water 
stored, given the size of the reservoir. 

For a delightful reading of the more recent 
history of s tochast ic reservoir theory , the interested 
reader is referred to E. H. Lloyd (1974a). 

It is the belief of this writer that the 
complexity of the problem has been well demonstrated 
by the fact that, i n the pursuit of a solution, nota­
ble engineers like Rippl , Hazen , Sudler and Hurst were 
able, respectively, to introduce the concept of mass­
curve , to invent such a useful device as the "proba­
bility paper," to pioneer methods of simulation, and 
to raise a question sti ll unresolved. 

3. Approaches to Storage Problems 

Approaches commonly used in the design of 
storage capacities may be classified i nto three groups: 
empirical, experim~ntal , and analytical. The empiri­
cal approach consists of the application of Rippl's 
mass-curve to the observed hydrological sequence. In­
put and output are both taken as (nown functions of 
the time. This approach is clearly inadequate , for 
the probability of repetition of t he same flow sequence 
is zero. Unfortunately, the method is sti l l quite 
widely used. 

The experimental approach is simply the 
appl ication of the so-called Monte- Carlo method or 
data generation method. It is also called the syn­
thetic hydrology method, and it consi sts of t he gen­
eration of a large number of flow sequences statis­
tically indistinguishabl e from the historical record. 
Rippl ' s method, or a modification of it, is applied 
to each flow sequence, and the probability distribu­
tion of storage capacities is approached from a rela­
tive frequency viewpoint. 

The analyt ical approach consists of t he 
derivation of exact, asymptotic, or approximated dis­
tributions, and moments of statistics related to the 
design of storage capacities , and it is the subject 
of this paper. Within this approach , two lines of 
research are usually identified: the line initiated 
by Moran and expanded considerably in the last two 
decades , and the l ine initiated by Hurst and Feller, 
which consist s of random variables. In this paper 
these lines of research 1;il1 be referred to as ~loran ' s 
analysis and range analysis , respectively. 

Range analysis is sometimes referred to as the 
infinite reservoir theory. The reasoning behind this 
seems to be t hat , although t he object of the study is 
simply tho pr operties of the partial sums of random 
variables, one may conceive the exist ence of a reser­
voir capabl e of st oring any water surplus and of sup­
plying any deficit of water. An i nfinite reservoir 
c l early satisfies such condit ions . On t he other hand 
Moran' s analysis is sometime's called the finite res­
ervoir theory even though in some cases the top (or 
the bottom) of the reservoir is abolished in order to 
assure mathematical tractability and elegance. Per­
haps the contributions from Moran 's school which 
abolish the t op (or the bottom) of the r eservoir 
should be referred to as the semi-i~fini te reservoir 
theory . 



S· I 

. \]--... 
dw 

4 5 6 7 8 9 n-2 n-1 n 

n 

Fig. 1.3. Definition of the maximum accumulated deffcit D 
n 

max {d.}. 
l 

One of the reasons to study the range is that 
since Hurst's initial work, the behavior of the range 
as n incr eases has acquired independent mathematical 
and scientific interest as an indicator of the struc­
ture of stochastic processes {Anis and Lloyd, 1975). 
The emphasis in range analysis has been on the deter­
mination of the expected value of the range for ex­
changeable (equally correlated) inputs simpl y because 
it follows directly from the expected value of the 
maximum (or minimum) of partial sums of exchangeable 
inputs, which is easier to study. 

In terms of Moran's analysis, a very large number 
of papers deal with the time-dependent probability 
function of storage levels, their limiting distribu­
tions, probability of water overflow and probability 
of emptiness of the finite reservoir, for stationary 
independent inflows. The most significant contribu­
tion in this field was the extension of ~loran's ini­
tial idea to seasonal and serially correlated inflows, 
which was given by E. H. Lloyd (1963,1964). After 
this contribution, several papers were published 
studying what became known as the Ll oyd reservoir. 

4. Objectives and General Approach in this 
Investigation 

Some engineers interpret the range as the 
required storage capacity to avoid both overflows and 
emptiness of the reservoir. This is an interpretation 
valid only in the case of full regulation of dis­
charges . Full regulation of river discharges is tan­
tamount to assuming that the random variables x1 
presented in Eq. (1.1) have zero expectation (i.e . , 

. the average net input is zero). When the average net 
input is positive, the regulation is only partial and 

3 

overflows are implied in the design procedure. In 
such a case, the parti al sums may appear as shown in 
Fig. 1.3 (recall that the Xi ' s in this case are 

still departures from the desired regulated discharge 
but their expectation is no longer zer o) . Clearly 
there can exist a random number of accumulated defi­
cits, which are the random variables {di; i=l ,2, ... , 

w} shown in Fig. 1.3. The required storage capacity 
is the maximum of these accumulated deficits, say, 
On. The study of the random variable On will be 

called maximum accumulated deficit analysis, or simply 
deficit analysis, and will be one of t~e subjects of 
this paper. 

Another objective of this paper will be to study 
the exact distribution of the range. In so doing, it 
will be shown that both range analysis and deficit 
analysis can be approached from a finite-reservoir 
viewpoint. 

It is well known that Moran's analysis is a 
direct application of t1uJ theory· of Maz>kov chains, 
when the boundari11s are reflecting. It wit.l be shown 
that range analysis can be derived from the same the­
ory, when the boundaries are absorbing. Furthermore, 
it will b6 shown that deficit analysis fot.lCNs from 
the theory of Markov chains with one absorbing and c-ne 
refLecting boundary. It is interesting to be able to 
derive all analytical approaches to storage problems 
by simply changing the character of the boundary in 
the theory of Ma:rokov chains. 

As a consequence, the distribution of the range 
will be shown to be closely related to the probability 
of emptiness before overflow and to the probability of 
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overflot; before emptiness in the finite reservoir. 
Also, the obvious relationship between the maximum 
accumulated deficit and the probability of emptiness 
with or without overflow of a f i nite, init ially full 
reservoir will be pointed out~ 

The basic approach in this investigat ion will be 
to work with discrete random variables as input (that 
is why the term Markov chains rather than ~larkov pro­
cesses is used). Starting with independent identical­
ly distributed random variables, the distribution of 
the range and of the maximum accumulated deficit will 
be studied. The possibility of extension to the case 

4 

of seasonal and !:erially correlated inputs will be 
indicated. The case of continuous random variables as 
input will be studied in some cases in which the inte­
grals involved exist in closed form. When this is not 
the case, the distribution of the range and the dis­
tribution of the maximum accumulated deficit will be 
obtained numerically, simply by "discretization" of 
the input (i.e., by choosing an "analogue" discrete 
distribution to approximate the continuous input). 

It is the hope of this writer that the reader 
will come to the conclusion that, at least in the 
single reservoir problem, the gap between theory and 
practical needs is not as wide as general l y believed. 



Chapter II 
REVIEW OF LITERATURE 

This chapter summarizes the main results in the 
study of the range of partial sums {range analysis), 
following J. D. Salas-La Cruz (1972) and briefly de­
scribes some of the contributions to the study of the 
finite reservoir (Moran's analysis). Furthermore, the 
lack of theoretical work on the maximum accumulated 
deficit (deficit anal ysis) is discussed and a note on 
the Hurst phenomenon is i ncluded. ·"' 

1. Range Analysis 

The asymptotic distribution of tho maximum 
partial sum (Mn) of independent identically distri-

buted random variables with mean zer o and unit vari­
ance was given by P. Erdos and M. Kac (1946) as : 

Mn /2 X _.!.} P[J-1 <x] ~ .; -; /e2 du rn - "II o 
(2.1) 

The asymptotic mean adjusted range of partial 
sums (R~) of independent identically distributed 

random variables with unit variance was given by 
H. E. Hur st (1951) as: 

E{R~} • 1¥- • 1. 2533n ~ (2 . 2) 

Hurst used a combinatorial lemma related to the maxi­
mum partial sum , in the particular case in which the 
last partial sum (Sn) equals zero . Multiplying the 

result by t wo, he obtained the asymptotic mean adjust­
ed range. It is not obvious at first glance that one 
can approach the adjusted maximum partial sum by 
studying the unadjusted maximum partial sum condi­
tioned to S = 0. 

n 

N. Feller (1951) f ound the asymptotic 
distribution of Rn as well as the asymptotic dis-

tribution of R~, for independent identically distri­

~uted ranaom variabl es with mean zero and unit vari­
ance, using the t heory of Brownian motion. In 
particular, he obtained the asymptotic mean and vari­
ance i n each case: 

and 

E{R } ~ f8rl ~ 1. 5958n ~ 
n /w 

Var {Rn} : 4n(ln 2 - 2/n) 

E{R~} 1¥- : 1. 2533n ~ 

0.226ln 

11 11 
Var {R~} ~ 2 (3- 1) n • 0.074ln 

(2.3) 

(2 . 4) 

(2 . 5) 

(2 .6) 

The exact expected value of the maximum of the 
partial sums s1, s2, , Sn of independent stan-

dard normal variables was given by A. A. Anis and 
E. H. Lloyd (1953): 

(2 .7) 

It can be easily shown from Eq. (2 . 7) that 

5 

E{M } = 
n 

1 n 
l: 

/2; i=l 
(2. 8) 

which leads to the expected value of the range 

(2 .9) 

A. A. Anis (1955) published the exact second 
moment of the maximum of the partial sums s1, s 2, ... , 

Sn and later (1956) presented a r ecursive relation­

ship for numerical evaluation of all the moments of 
the maximum of the partial sums sl. sz· ···· sn of 

independent standard normal variables. 

Results s imi lar to the above can be obtained 
usin(F . Spitzer ' s (1956) i dentity, which is more gen­
eral. Considering, a sequence of independent and i den­
ticall y distributed random variables and S. 

J 
x1 + x2 + + xj , Mj • max (0, s1 , s 2, .. . , Sj) 

+ and Sj max (0 , Sj )' Spitzer derived the identity 

l: 
j cO 

8. (t) 
J 

(2.10) 

where 8 j (t) 

tions of M. 

and Q.(t) are the characteristic func­
+J 

and S., respectively. 
J J 

From Eq. (2.10) , the moments of M. can be 
J + 

written as a function of the moments of Sj' which are 

easier to compute. In particular, it can be shown 
that 

(2 .11) 

and 

n i-1 . -1 (" .)-1 + l: l: J 1- J E(S~) E(S~ .) 
i=2 j•l J l-J 

(2 . 12) 

Equation (2.11), ap,l ied to the case of 
independent normal variables with mean zero and vari-

ance o
2 

leads to 

E(M } 
n 

and thus 

where var(S.) • i o
2

. Notice that for a= 
(2 .14) reduc~s to Eq. (2 .9), as it should. 

(2 .1 :;) 

(2.14) 

Eq . 



M. E. Solari and A. A. ~ni~ (1957) derived the 
first two moments of the maximum adjusted partial sum 
for independent, standard normal variabl es : 

and 

(2 .15) 

2 rn n-1 i-1 
E{M*2 } • ! (~ + _E. l: l: ---;::;;::i::(2=i=-=n=)::; J 

n 6 n 211 
1
.,2 J.,.1 1 • 

• . 3( ' •)(' ')3 J n- J. l.-J 

(2 .16) 

P. A. P. ~loran (1964), exploring Spitzer's result 

furt her , showed that E(Rn) varies as n11Y, when 

considering the range of partial sums of independent 
random variables having the characteristic f unct ion 

exp C- lt lyl (i.e., symmetric stablerandomvariables). 

A procedure for obtaining t he exact di str ibution 
of Mn, mn and Rn was described by V. Yevj evich 

(1965), for the values of n = 2 and n " 3. For 
higher values of n, Yevjevich used the dat a generation 
method to i nvestigate the properties of M , m , R , 

n n n 
~~~. m~, and R~, for a first order autoregressive 

process. He also used the data generation method to 
assess the effects of nonnormality, in the case of 
independent random variables. 

M. J. Melentijevich (1965) , using the data 
generation method, found approximate equations for the 
expected value and variance of the range when the out­
put is linearly dependent on storage. 

V. Yevjevich (1967) suggested that the expected 
range of l inearly dependent normal variables could be 
expressed by Eq. (2.14), which was derived for inde­
pendent normal variables . Using the data generation 
method, he showed that for the case of the f irst and 
second order autoregressive models and the simple 
moving average scheme t he results given by Eq . (2.14) 
closely approximate the exact (and unknown) values . 

J. D. Sal as- La Cruz (1972) found t he exact 
expected value of Mn for the case of random vari-

ables with general covariance structur e, for n = 2 
and n = 3 . Salas also proposed approximat e expres­
sions for the mean and variance of the range of 
periodic-stochastic series. 

D. C. Boes and J. D. Salas-La Cruz (1973) 
summarized the existing expressions for the expected 
range and expected adjusted range, showing that they 
follow from a single expression, namely the expected 
range of the partial sums of exchangeable random vari­
ables. They also obtained a new asymptot ic resul t: 

E(R~ } : (;n (1 - p) )~ (2.17) 

for exchangeable normally distributed random variables. 
Notice that when the coefficient of correlation p is 
equal to zero, Eq. (2.17) reduces to Eq. (2.2) as it 
shoul d. 

Subsequently, J. D. Salas-La Cruz and D. C. Boes 
(1974) elaborated on the previous study , and among 
other things, graphically illustrated the t r ansient 
nature of the general formulas for the expected ad­
j us t ed range. 

6 

A. A. Anis and E. H. Lloyd (1975), followi ng 
Boes' and Salas-La Cruz ' reasoning with exchangeable 
random variables (1973), showed that tne exact expe~ted 
value of the rescaled adjusted range (meaning tJoc ratio 
between the adjusted range and the sample standard 
deviation) for independent normal summands is 

E{R** } "-1-
n rz; (2 .18) 

which leads to the asymptotic value given by Eq. (2 .2), 
The relevance of this result follows from the fact 
that Hurst's experimental study refer red exactly to 
the rescaled adjusted range. Furthermore, Anis and 
Lloyd showed that the same resul t holds for exchange­
able multivariate normal summands . Therefore, t he 
asymptotic value of R;* departs drastically from Eq. 

(2.17), which indicates that i n some cases t he assump­
tion that the behavior of the rescaled adjusted range 
can be inferred from the behavior of the adj usted 
range is not justifiable. .. 

One should notice that the emphasis in these works 
has been on the expected value of the range, simply 
because it can be approached through the study of the 
maximum partial sum, which is a simpler problem. The 
exact distribution of the range and the determination 
of higher moments have been approached only by the data 
generation method with the exception of Yevjevich's 
exact solution for the distribution of R for the 

n 
cases n • 2 and n " 3. The only other work which 
neither uses the data generation method nor approaches 
the range through the maximum partial sum is Fel ler's 
derivation of asymptotic results. 

2. Moran's Analysis 

A slight modification of P. A.P. ~loran's (1954) 
initial work will be presented. The model is formu­
lated in discrete time, by considering a finite res­
ervoir of size k and the water net i nput (input 
minus output) as a sequence of independent , identical­
ly distributed discrete random variables such that 
PC xt = i) = Pi . 

The reservoir is such that when full , it continues 
full only if the next input is nonnegat ive (and thus 
an overflow may occur), and when empty, it continues 
emply only if the next net input is equal to zero. 
Then the amount of water stored follows a simple ho­
mogeneous Markov chain with state space {0, 1, 2, ... , 
k} and one step transition matrix as follows: 

0 2 3 k-2. k-1 k 

0 10 1._1 1_2 1_3 1-1<+2 1-k+l 1_1< 

P. l Po P_1 P_2 p-k+3 p-k+2 p-k+l 

2 p•2 p•1 Po P_1 p-1<+4 p-1<• 3 p-k•2 

3 p+3 p•2 p+1 Po p-k+S p-1<+4 p-k+3 

k-2 p•k-2 p+k-3 p+k-4 p+k-5 

k- 1 p•k- 1 p+k-2 p +k-3 p•k-4 

k u.k u+k-1 u+k-2 u+k-3 



where the elements in the first and last rows are to 
be i nterpreted as fo llows: 

0"'0,1 , 2, ... , k) 

(j=O,l,2, ... ,k). 

Once the amount of water stored fol l ows a 
homogeneou~ Markov chain, Moran and others emphasize 
the problem of determining the "steady state" proba­
bilities, which will be discussed i n the next chapter. 

The transient distribution of the amount of water 
stored was reported by N. U. Prabhu (1965) , for the 
case of geometric i nputs. For illustration purposes, 
this result will be p~esented . 

Consider the case in which the net input has a 
geometric distribut ion: 

abi+l pi • ( " - 1, 0, 1, 2 , . .. ) (2.19) 

where 0 < a < 1 and a+b=l. For a finite 
reservoi r of size k-1, the transition matrix is 

/ 0 1 2 k- 1 

0 a+ab a 0 0 

1 ab2 ab a 0 

2 ab3 ab2 ab 0 

k-2 k- 1 k- 2 k-3 ab ab ab a 

k-1 bk bk-1 bk-2 b 
(2.20) 

Let the n-step tran.sit ion probabilities be denoted by 

q ' (n) ( j, i) = P [Y = j I Y = i] 
n o 

where Yt is the amount of water at time t. 

Prabhu defined the generating function 

G(j,i) 
.. 
,. , (n) (' ') n " q J , l :t 

n=2 

and showed that 

G(j , i) • 

+ 

where ~t-i ~1<-i 
11 

(~It-i- t Ak-i-1) 
v • _l_-_2 __ -__ •__,t,.,..,-;-_·-_:..2 --
0 A~l A~l 

1 2 

v • 
v 

c I z.l < 1) 
(2 . 21) 

' 
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and 

(l !. v !. i • l) 

(i !. v !. j •l). 

1 • It- 4abz Al • .::....;~:..:..::....::..::=- A2 • 
1-~ 

Notice that to "invert" this result, to obtain 

q' (n) (j,i) is not an easy task. For n ~ 10, s ay, 
one has to differentiate G(j , i) ten times with re­
spect to z. Clearly this result indicates that the 
usefulness of some results in closed forms can be 
questioned. It is more appeali ng to the engineer to 

solve t he problem numerically, for q'(n) (j,i) is 
simply the (j ,i ) entry in the n·th power of the 
transi tion matrix shown in Eq. (2.20) .. 

Other authors analyzed the problem of emptiness 
with overflow and before overflow. B. Weesakul's 
(1961) result, typical of the rest, refers to the case 
of geometric inputs. He analyzed the cases of first 
emptiness before overflow and first emptiness regard­
less of occurrence of overflows. This second result 
is transcribed below for illustration pur poses and 
because of its r elevance to the concepts exposed in 
Chapter V. 

Using the same input shown in Eq. (2 .19) , 
Weesakul showed that for a finite reservoir of size 
k-1 which had an initial content u > 0 , the proba­
bility of first emptiness occurring at time t + u, 
regardless of how many times overflow occurs, is given 
by 

where av 

roots of 

{a sin[(k- u+l)a J - b sin [(k- u+l)a ]} 
X V V 

{a(k+l) cos[(k+l)av]- b(k-l)cos((k-l)av]} 

(2 . 23) 

1 
(v • 1, 2, ... , (I k]) are the distinct 

a sin((k+l)a) - b sin[(k-l) a] 0 (2. 24) 

which l ie in the subinterval s 

and where 
i n k/2. 

(~ V1!) 
k-1 ' k 

(~] denotes the largest integer contained 

E. H. Ll oyd (1963) extended Moran's model, to 
take into account serial correlation of the inputs. 
Assuming that the sequence of inputs can be described 
by a ~tarkov chain, Ll oyd r edefined the "state" of the 
system in terms of the values of the pair of variables 
storage-input and introduced a bivariate transition 
probability, namely the conditional probability that 
the pair storage-input at time t assume specified 
values, given the values of the pair storage-i nput at 



time (t-1). With this device, the Harkov property 
is restored and methods' similar to the ones used in 
the univariate problem are applicabl e . The size of 
the matrix involved increases drastically . Instead of 
k+l states {0, 1, 2, ... , k} ,-'one has to consider 
m(k+l) redefined states with m being the number of 
different possible values assumed by the input . 

E. H. Ll oyd and S. Odoom (1964) ext ended Moran's 
model to take into account seasonality of inputs. 
This has been accomplished simply by· considering a set 
of t r ansition probability matrices, one for each sea­
son. A detailed analysis of the simple two seasons 
model was given for illustration purposes. 

Only contributions directly related to this paper 
have been discussed . There is a large number of other 
interesting works, and for a comprehensive view the 
i nterested reader is referred to review papers by 
N. U. Prabhu (196d), J. Gani (1969) and E. H. Lloyd 
(1974a). 

3. Deficit Analysis 

Very little work has been done on deficit 
analysi s. To the knowledge of this writer, only two 
papers deal specifically with the maximum accumulated 
deficit, and both are "practical" papers in the sense 
that one presents an empirical treatment of actual 
data and the other used the data generation method . 

E. H. Hurst (1951) , using his long term sequences 
of natural phenomena, made an attempt to nnd the re­
lationship between the adjusted maximum accumulated 
deficit (i.e., maximum accumulated defici t when t he 
draft is a percentage of the sample mean) and the ad­
justed range . His method of analysis consisted of 
plotting observed values of the pair adjusted range-­
adjusted maximum deficit, and fitting curves "of the 
exponential and square-root forms: by simple regres­
s i on techniques . The empirical formulae proposed 
·were: 

log(D*/R*) = -0. 11 - 0.88 (Z-B)/S 
n n 

(D*/R*) = 0.91 - 0 .89 l(l-B)/S n n 

(2.25) 

(2 . 26) 

where Z is the (sample) mean discharge, B is the 
constant output, S is the sampl e standard deviation 
of the natural discharge, and R~ and D~ are the 

adjusted range and the adjusted maximum accumulated 
deficit, respectively . Hurst concluded t hat "as far 
as c loseness of fit is concerned, over the range of 
observations, there is no significant di fference be­
tween one type of curve and the other. At some fu­
ture time, it may perhaps be possible to decide that 
one or the other has some theoretical justification, 
but this has not so far been possible." 

M. B. Fiering (1965), using the data generation 
method, investigated a wide range of possible data 
combination characterized by several input populations 
with different coefficients of skewness and serial 
correl ation, by several levels of regulation and by 
record l engths typical i n hydrologic studies. For 
each combination, either R~ or D~ was taken as t he 

~tOr!Se capacity required, depending on whether Z = B 
or Z ~ B, respectively. 

I t is i mportant to stress that in both works, 
the mean adjusted range and the mean adjusted maximum 
ao.:cumulated deficit rather than the unadjusted ones 
won1 taken as the storage capacity required, and in 
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opinion of this writer, it is not easy to justify 
this criterion. 

4. A Note on the Hurst Phenomenon 

Hur st (1951) derived the asymptotic value of the 
mean adjusted range of partial sums of independent 
random variables with unit variance (Eq . (2 . 2)). 

In order to verify this result experimentally, 
Hurst generated 30 sequences of size 100 of indepen­
dent random variables, computed for each sequence t he 
statistic R* /S /i1. where s2 is the (biased) sample 

n 
variance, and obtained an average value for this sta­
tistic close to 1.25, thus indicating that the deri­
vation of Eq. (2.2) was probably correct. 

Subsequently, in the analysis of data relative 
to natural phenomena (meaning rainfall, discharge, 
temperature , pressure, growth of tree r ings, thick­
ness of layers of mud and sunspot numbers), Hurst 
came to the conclusion that the mean rescaled range 

K 
(m:aning R~/S) varies as n , where K has mean 

0.729 and variance 0.303, and consequently, that the 
square- root law found before does not prevai l for 
natural phenomena. 

The important feature to observe is t hat Hurst 
used two different methods of analysis : in dealing 
with generated -random data, he assumed that 

E(R~/S) = a .n° · 5 (2 . 27) 

and estimated the value of t he parameter a (thus, 
in effect, he imposed the square-root law); however, 
in deal i ng with data of natural phenomena, he assumed 
that 

K 
E (R~/S) = (n/2) 

or, equival~nt ly, 

K = log[(R~/S))/log(n/2) 

{2 . 28) 

(2.29) 

To illustrate that the two methods of analysis 
lead to differ ent conclusions, it suffices to go back 
to Hurst ' s own generated data {used to show that the 
square-root law prevails for "random events") and 
apply Eq. (2.29). The conclusion is that the esti­
mated mean value of K is 0.64 and thus the square­
root law does not prevail! 

However, the reasoning behind Eq. (2 . 28) is 
sound: one would like to have R~ • S for n • 2, 

independently of the value of K (it can be easily 
verified that when the biased estimator for the vari­
ance is used, 

n 
l: 

i= l 

- 2 
(X. - X) 

l 

n 

then R~ = S for n 2). Another reason for Hurst's 

proposal of Eq . (2. 29) is that it seems to fit his 
data well (certainly the indisputable fact is that his 
data depar t f rom Eq. (2 . 2)) . Probably f or this reason 
the fo l lowing estimator has not been used: 



log(R'/5) - log(l. 25) 
K' = n 

log(n) 
(2.30) 

.· 
Interestingly enough, using Eq. (2.30), the mean value 
of K' for Hurst ' s 690 cases of natural phenomena 
turns out to be 0. 57 , still larger than 0.50, but much 
smaller than 0. 73. Furthermore, when Eq. (2.30) is 
applied to Hurst's 30 sequences of generated data, the 
mean value of K' is 0.50 . 

Once Eq . (2 . 29) gives the right result for n • 2 
but leads to inconsistencies when applied to n = 100 
(in the case of Hurst's generated data, for instance), 
the obvious conclusion is that it i s not reasonable 
to assume that the relationship between the logarithm 
of the rescaled range and log (n) is linear. The 
reader may find it il l ustrative to plot values of 
log(E(R~/S)] given by Eq. (2.18) against log (n) to 

see that the relationship is not linear for small 
values of n, and that even though the square-root law 
holds for large values of n, the rescaled range be­
haves as higher powers of n, in a pre-asymptotic 
sense. This argument (Hurst phenomenon as a simple 
transient effect) was first presented by E. H. Lloyd 
(1967), based on the analysis of Eq. (2.15) rather 
than (2 .18). 

Exploring further the idea of transience, it was 
natural to follow Feller' s (1951) suggestion and to 
study the mean adjusted range for dependent random 
vari ables. N. Matalas and C. S. Huzzen (1967) simu­
lated 10,000 sequences of Gaussian-Markov processes 
for each of several combinations of n (record 
length) and p (lag one coefficient of correlation). 
For each sequence, the coefficient K as defined by 
Eq. (2 . 29} was computed. His conclusion was that in 
general the results were similar to Hurst ' s, with the 
mean value of K ranging from 0.58 to 0 . 87. 

Since Hurst's basic argument was that the s~uare­
root law apparently does not hold for geophysical data, 
it was natural to look for possible explanations out­
side the Gaussian Markov framework. As mentioned be­
fore, P. A. P. Moran (1964) showed that the range of 
partial sums of independent stable random variables 

~ehaves as n11Y. D. C. Boes and J. D. Salas-La Cruz 
(1973) showed that this is also the case for the ad­
justed range . However, it is important to note that 
s tably distributed random variables with par ameter 

9 

l <y<2 have finite mean but infinite variaJ 
some hydrologists find it difficult to ace 
hydrologic processes have infinite varianc 

. 
' 

point to stress is that in some cases one can a~~~r ­
the idea of similarity of behavior between the ad­
justed range R~ and the rescaled range R~/S. How-

ever, when the expectation of the sample variance does 
not exist, one may be tempted to conclude that the ad­
justed range and t he rescaled range behave in differ­
ent fashions. Therefore , it is th~s wri ter' s opinion 
that the reasoning with stable distributions cannot 
be accepted as a candidate to explain the Hurst phe­
nomenon before the behavior of the rescaled range is 
assessed. 

Another attempt to explain the Hurst phenomenon 
outside the Gaussian-Markov framework was made by 
B. B. Mandelbrot and J . R. Wallis (1~68, 1969a, l969b). 
They proposed an alternat i ve generator of Hurst-like 
sequences, called " fractional Gaussian noise," char­
acterized by a property called "self-similarity.'' 
This model assumes that geophysical processes have 
"infinite memory" (meaning that the distant past 
exerts small but nonnegligible influence in the 
present), and so:ne hydr~logists find difficulties 
in accepting this assumption (A. E. Scheidegger, 1970, 
Y. Klemes, 1974). 

The other area explores as an alternative 
explanation for the Hurst phenomenon is that of possi­
ble nonstationarity of geophysical time series. Hurst 
(1957) proposed an interesting model, in which the 
mean input suffers random finite jumps, randomly in 
time. P. E. O'Connell (1971) claimed Hurst-like prop­
erties for particul ar autoregressive integrated 
moving-average (ARIMA) models. Recently, Y. Klemes 
(1974) elaborated further on Hurst's idea of random 
jumps occurring randomly i n time. 

Later in this paper, depar ting from these 
possible expl anations (infinite memory, infinite 
variance, or nonstationarity), the argument that 
"short memory" (meaning that the influence of the dis­
tant past in the present is negligible) models pre­
serve the so-called Hurst phenomenon will be presented 
The argument will be original, but the reader should 
note that the idea is old: it goes back to Feller ' s 
(1951) conjecture, and it has been verified by 
~mtalas and Huzzen (1967), and by Y. Klemes (1974), 
using the data- generation method. 
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Chapter Ill 

BACKGROUND MATERIAL 

1. Markov Chains .· 
In this section a summary of the theory of Markov 

chains is presented. Although this topic is well­
known and can be found in basic text books, it is con­
venient to present it here for quick reference. A 
very attractive presentation of the subject has been 
made by E. H. Lloyd (1974), and in this section his 
contribution is summarized. 

1.1 Generalities. Considering the time structure of 
a univariate discrete process {Yt}, two extreme cases 

may arise: the situation when the random variables 
Y0 , Y

1
, Y2, ... are all independent of each other (Eq. 

(3.1)) and the situation in which the distribution of 
the variables is influenced by all earlier observa­
tions (Eq. (3.2)). 

P[Yt = i, yt-1 = j, yt-2 = k, ... , YO= w] 

i) -P[Yt-l = j]·P[Yt_2 = k]· . .. ·P[YO = w] 

(3.1) 

P[Yt ~ iiYt-l = j, ... , Y0 ~ w] -P(Yt-l • j jYt_2 

k, ... , Y
0 

= w] ..... P(Y
1 

= vJY
0 

~ w)-P[Y
0 

= w] 

{3.2) 

In Eq. (3.2), the expression P[Y = siC] denotes 
r 

the conditional probability the Yr . s hould take the 

value s, given the condition C. 

A model intermediate between (3.1) and (3.2), in 
. .,hich the distribution of the value Y t is influenced 

only by the previous k observations is called a k­
step Markov chain (Eq. (3.3)) . 

P(Yt = iiYt-1 = j, yt-2 k, ... , yt-k m, . Yt-k-1 

n, ... ., y ,. w) 
0 

P(Yt = iiYt-1 • j, yt-2 = k, ... , yt- k ~ m] 

(3.3) 

Each value of k calls for its own methods of 
~nalysis, which are similar to some extent to the 
methods used for the case k = 1, which is the 1-step 
~arkov chain, or simple Markov chain. 

1. 2 Simple Markov Chains. For the simple Markov 
~hnin, Eq. (3.2) becomes 

(3.4) 

The conditional probability P[Y = slY = u] 
,, ~ nlled a transition probability, aftd is samltimes 
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written in short notation as p , indicating a u,s 
transition from the "state" u to the "state" s. 
Because it is a conditional probability, it follows 
that, for each fixed value of the conditioning vari-
able Y 1, L P[Y = sJY 1 = u] = E p = 1, summed r- s r r - s u,s 
over the conditioned variable Y . 

r 

From (3.4) , the marginal distribution of Y can 
be obtained as t 

P(\ = i] = I: 
j 

k, ... , yl = v, yo·= w] 

E q~ (i,j) ·q~_ 1 (j,k) · ... ·qi (v,w) · P[Y0 = w] 
w 

(3.5) 

where qr' (s ,u) = p • P(Y ~s lY = u]. u,s r r-1 

The symbol q~(s,u) rather than pu s is used 

to proportionate a more convenient matrix' notation to 
Eq. (3.5). Let Et denote a column vector with ele-

ments Et (s) = P[Yt • s] , s • 0, 1, ... , and Q~ a 

square matrix in which the (i , j) entry is q~(i, j) . 

Then Eq. (3 .5) can be written as 

and, equivalently, 

£t .. Q~. t t-l t = 1,2, .... (3. 7) 

If the restriction of time homogeneity is imposed , 
so that Q~ Q', for e~·ery t, Eqs . (3.6) ar.d (3. 7) 
become 

(3.8) 

and 

t : Q I • E: • 
t t-1 

(3.9) 

Whilst the distribution vectors t
0

, t 1 = Q' · 
2 t

0
, t 2 " Q' · t

0
,... are in general different from 

each other, there is a large and important subclass of 
so-called ergodic Markov chains for which £t con-

verged to a unique limit t which is a probability 
vector and which is independent of the initial state 
of the system. Let the elements in this vector be de­
noted by t(r) = P[Yt = r]. 

In the ergodic case, £t + t , and thus it follows 
from (3.9) that 

t = Q' (3.10) 

or, equivalently, 

(Q' - I) • £ = 0 (3.11) 



where stands for the identity matrix and 0 is a 
vector with all elements equal to' zero. 

Equation (3.11) represents a system of linear 
equations which, in conjunction ~1th the condition 

1: e: (r) = 1 
r 

determines e: uniquely. 

(3.12) 

1.3 Nonsimple Markov Chains. For the purposes of 
this paper, a presentation of the 2-step Markov chain 
will suffice. In this case, Eq. (3.2) becomes 

P(Yt i. yt-1 = j, yt-2 • k , yt-3 =I, ... , y2 

P(Yt = i iYt-l = j , Yt_2 k] · P(Yt-l 

= j IYt-2 • k, yt-3 = 1) . 

. .. P(Y2 = uiY1 = v, Y0 = w)·P(Y1 v, Y
0 

= w]. 

(3.13) 

To use a technique similar to the one presented 
for the simple Markov chain, the transition prob­
ability can be written as 

P(Y = i IY 1 t t-

= j iY t-1 

j, \-2 = k] 

j, \-2 = k] at(ijljk). 

The "marginal" distribution of the pair (Yt'\-l) 
can be obtained by 

P(Yt = i, yt- 1 = j] 

j, ... ,Y
0

= w] 

1: E ••• E P(Yt i, Yt-l 
k I w 

1: E . .. E a (ijljk)·a _1(jklk1) ... a2 (uvlvw)·P[Y1 k I w t t 

= v, yo = w] . 

Or, in mat rix notation, 

where ot is the vector with elements ot(i ,j) 

P[Yt = i, Yt-l = j), ordered as 

(3.14) 

(3 .1 s) 

the symbol T denoting the transpose of the vector. 
The elements of the matrix At are at(ijljk), ar-

ranged as shown in the following e~ample: 
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( j,k) 

00 01' 02 10 11 12 20 21 22 

00 • • 0 0 0 0 0 0 

01 0 0 0 • 0 (\ 0 

02 0 0 0 0 0 0 • • 

(i,j) 10 • • 0 0 0 0 0 0 

11 0 0 0 .... • 0 0 0 

12 0 0 0 0 0 0 • • • 
20 • • 0 0 0 0 3 0 

21 0 0 0 • • • 0 0 0 

22 0 0 0 0 0 0 • .. 

The asterisks indicate nonidentically zero 
entries . For example, the entry*** is at(llllO). 

• 
If the transition probabilities are not time 

dependent , Eqs. (3 .15) and (3 . 16) become, respectivelly, 

.st 
t-1 

"' A 01 (3 . ][7) 

and ot = A . 6t-l t = 2,3, .... (3.18) 

As in the case of the simple Markov chains, if 
the transition matrix is ergodic , ot will converge. 

with increasing t , to a limit vector, which defines 
the joint equilibrium distribution of the consecutive 
pairs of variables. From this , the univariate lim­
iting vector can be _. obtained. 

2. The Symmetric Random Walk and the Method of 
Images 

The purpose of this section is to present the 
classical method of images and to apply it in the der­
ivation of expressions that will be used later in this 
paper. 

2.1 Generalities. Consider the sequence of 
independent random variables {Xi; i = 1,2, ... } such 

that P[Xi = +1] = p, P[Xl = -1) = q and p + q = 1. 

The distributiGn of the sum Sm = Xl + X2 + •·• + 

Xm(m = 1,2, ... ) is given by 

P[S = s] = c . p(m+s)/2 . q(m-s)/2 
m m (m+s)/2 

(3 .19) 

where 

C ml 
m (m+s)/2 ,. [ (m+s)/2) ! [(m-s)/2) I 

and 

s z -m, -m+2, -m+4, ... , m-4, m-2, m. 

This process is called a simple random walk. 

For the ~ymmetric random walk, p = q = ~ and 
Eq. (3.19) reduces to 

P(Sm = s) = mC(m+s)/2 • ( l /2)m. (3.20) 
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The x1•s are independent and identically 
distributed and t hus the fol lowing relationship holds: 

u] = P[X l + X 
2 

+ ••• + X = s-u) m+ _. m+ m+n 

P[Sn = s-u] = nc(n+s-u) / 2 (1/2) n . (3 . 21) 

2. 2 The One-Boundary Problem. The ideal coin-tossing 
will be used to illustrate the different cases pre­
sented i n t his section, following W. Feller (1970) . 

Consider a player "betting against the house"; 
assume that the "house" is infinitely rich, but the 
player has a finite initial capital C. The game is 
"head and tails" and the player loses one dollar each 
time the outcome is, say , a head. Thus, a head stands 
for a -1 and a tail stands for a +1, fr om the 
player' s viewpoint. 

One of the questions that arises is what is the 
probabi l ity that the player will have a fina l capital 
S at the end of n coin tosses . To answer this 
question one has to have i n mind that the player may 
very wel l go broke before the n·th coin t oss, in which 
case the game would not continue. The solution is 
easily found using a geometric reasoni ng , which is the 
essence of the so-called method of images. 

Referring to Fig. 3.1, U' is the point with 
coordinates (0,-u) and it is the image of point 
U(O,+u) with respect to the line y = 0. The geo­
met ric reasoni ng is as follows : the number of paths 
going from U(O,+u) to S(n,+s) which t ouch or cross 
the l i ne y = 0 equals the number of aZZ paths from 
U' (0, - u) to S(n,+s). 

y 

Fig . 3.1. The essence of the method of images. 

Consequently, the number of paths from U to S 
whi ch do not cross or touch t he axis is the di f ference 
between the number of aZZ pathr. from U to S and 
the number of aZZ paths from U' to S. The prob­
ability 0f such an event is obtained by dividing this 
difference between t he number of paths by 2n (total 
number of n-step paths starting in U). 

Applyi ng Eq . (3 . 2i), the probabil ity that the 
player will have a final capital S = s at the end of 
the n·th coin toss, gi ven that the initial capital U 
was u, is 

s-u] - P[S 
n s+u) = nC(P+S-u)/2 . (l/2)n 

- c . (1/2) " 
n (n+s+u)/2 (3 . 22) 

Or , i ntroducing an obvious notation: 

A boundary such as y = 0 in the above example 
is cal led an absorbing boundary, in the sense that, 
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once i t is reached, the "system" continues in this 
"state" with probability one (the p layer is broke and 
the game ends). 

Now suppose that the house is generous enough not 
to collect the p layer ' s l ast dol l ar. Thus, when the 
player has only one dollar, the " system" continues in 
"stat e" 1 with probability !1 (when the outcome is a 
head) and goes to "st ate" 2 with probability ~ (when 
t he outcome is a tail) . 

It can be shown that the probability that the 
player will have a final capital S = s at the end 
of the n·th coi n toss , given the initial capital U = u 
and given that the house does not charge him for his 
last dollar is 

where P[Sn = s-u] is given by Eq. (3.21). 

This is tantamount to adding the number of a H 
paths from U t o S to the number of aZZ paths from 
U". to S, where U" has coordinates (0, -u+ 1) and 
it is the image of point U with respect to the line 
y = ~ (see Fig. 3.2) . 

A boundary such as the axis y = 1 i n the above 
example is called a reflecting boundary, i n the sense 
that it does not allow the axis y = 0 or ("state" o: 
to be reached. 

Fig. 3.2 . Reflecting boundary for the endless game . 

2.3 The Two-Boundary Problem. Now consider t he case 
of two players with finite capitals . The game ends 
when one of them goes broke, and thus the problem in­
volves t wo absorbing boundaries. 

Referring to Fig . 3.3, one may ask what is the 
nubmer of paths from A to B which do not cross or 
touch either boundary. 

y =o 

A 

,~~- Jl:::: 11::::" II::: It ::= II .:::. It ::: I t ;;; I J:::.lt : (f .: II ;;; " B 

Fig . 3 . 3. Absorbing boundaries for the finite 
duration game between two players. 

Denote by 

respect to the axis 

the image of point A with 

y = 0, by A(Z) the image of 

point A(l) with respect to the axis (3' y = a, by A • 



the image of point A(2) with respect to the axis 

y = 0, and so on. Similarly, denote by A~l) the 
image of point A with respect to the axis y = a, by 

A~2) the image of point A~l) ~ith respect to the 

axis y = 0, by A~3) the image of point A~2) with 
respect to the axis y = a, and so on. 

The solution to the problem is given by 
considering the number of aZZ paths going from A to 
B, subtracting the number of aZZ paths going from 

A(l) and A~l) to B, adding the number of aZZ paths 

going from A(2) and Ai2) to B, subtracting the 

number of aZZ paths going from A(3) and A~3) to 
B, and so on. 

Considering the case in which the players do not 
collect each other ' s last dollar, the problem involves 
two reflecting boundaries (in such a way t hat no 
player goes broke). 

Referring to Fig. 3.4, the probability of being 
at B, after the n·th play, given that the process 
started at A, is found by considering the repeated 
images as before, now wi th respect to the axes 
y = a - 1/2 and y : 1/2, and by adding all proba­
bilities involved (recall that i n the previous case 
addition and subtraction were performed alternately). 

/l :::> fl""tt=ll-/1=:::/1 - u-11=-f/=ll:::(t- 1/-:: f/= tt 

y=o-1/2-:J.. - --- ------------------:--8 

A 

Fig. 3.4 . Refl ecting boundar ies for the endless game 
between two players. 

The case of one absorbing and one reflecting 
boundary can be treated similarly. A more careful 
analysis of the cha.nges of sign is necessary in this 
case. 

It i s convepient to homogenize notation before 
giving explicit results for each case of the t wo­
boundary problem. In Section 1 the symbol q~(s,u) 

was introduced to denote the one-step transition prob­
ability from state u to state s. This would be 

better defined by q~l)(s,u), so that in general 

q~n)(s , u) will denote then-step transition proba­

bility from state u to state s . The subscript t 
can be dropped whenever time- homogeneity is assumed, 
as in t he problem in this section. For convenience, 
the state space considered will be {0,1,2 • . . . k,k+l }. 

Two absorbing boundaries 

The random walk in this case is a Markov chain 
with the following one-step transition matrix Q' : 

13 

0 

1 

2 

3 

k-2 

k-1 

k 

k+l 

0 1 2 

1 1/Z 0 

0 0 1/2 

0 1/2 0 

0 

0 

0 

0 

0 

0 1/2 

0 0 

0 0 

0 0 

0 0 

k-1 k k+l 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

1/2 0 0 

0 1/2 0 

1/2 0 0 

0 1/2 

• The probability of goi ng from state u 1, 
2, ... , k to state s = 1, 2, ... , k in n steps with­
out touching or crossing the boundaries will be de-

noted by q(n)(s,u) and it is the (s ,u) entry in t he 
n•th power of the following matrix : 

0 1/2 

1/2 0 

0 1/2 

Q = 

0 0 

0 0 

0 0 

0 

1/2 

0 

0 

0 

0 

0 0 0 

0 0 0 

0 0 0 

0 1/2 0 

1/2 0 1/2 

0 1/2 0 

which is obtained from matrix Q' simpl y by deleting 
the first and the last row and column. 

Using the met hod of images as described, it is 
found that 

j:r+ CD 

q(n)(s,u) = ~ [vn(2j(k+1)+u,s)- vn(2j(k+1)-u,s)] 
j=--aa 

(3. 23) 

where vn(t,r) • P[Sn = r-t) is given by Eq. (3.21), 

and where onl y finitely many nonzero terms exist. 

Finally, the relationship between the n·th powers. 
of the matrices Q and Q' is the fol lowing: 

1 t.T 0 n 
Q'n ,. 0 Qn . 0 

0 u.T 
n 1 



where 0 is a column vector wi th all elt.!ments equal to 
- T . T 

zero and u and l are row vectors (T stands for 
n n 

transposed, u stands for ab~orption in the upper 
boundary and l stands for the absorption in the 
l ower boundary) . 

The vectors u and l are given by 
n n 

2 3 n-1 un = (I+Q+Q +Q + ... +Q ) · u1 , 

where 
T u1 = [0 ... 0 0 1/2), 

and 

t 
n 

2 3 n-1 (I+Q+Q +Q + . . . +Q ) · l
1

, 

where 

ti = [1/2 0 0 ... 0] . 

TWo rej1eating boundaries 

The matrix Q' in this case is 

0 1 2 k-1 k k+l 

0 1/2 1/2 0 0 0 0 

1 1/2 0 1/2 0 0 0 

2 0 1/2 0 0 0 0 

k-1 0 0 0 0 1/2 0 

k 0 0 0 1/2 0 1/2 

k+l 0 0 0 0 1/2 1/2 

and there is no advantage in defining the matrix Q. 
q ' (n)(s,u) is the (s, u) entry in the n·th power 
of the matrix Q', and applying the method of i mages, 
it is given by 

j=+oo 
q ' (n) (s,u) = l: [v (2j (k+l)+u,s) + v (2j (k+l)-u+l,s)] 

. n n 
J=- "' (3.24) 

where, as before, vn(t,r) = P(Sn = r - t] is given by 

Eq. (3. 21) , and where only finitely many nonzero 
terms exist . 

One absorbing and one rej1ecting boundary 

In this case, the matrix Q' is shown below, for 
the case when the absorbing state is s tate 0. The 
matrix Q can be obtained by deleting the first row 
and the first col umn (recall that in the case of the 
twu ~bsorbing boundaries, the first and the last rows 
and columns were del eted). 
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0 

1 

2 

3 

k-1 

k 

k+l 

0 1 2 

1 l/2 0 

0 0 l/2 

0 l/2 

0 0 

0 0 

0 0 

0 0 

0 

1/2 

0 

0 

0 

k-1 k K· 

0 0 

0 0 

0 0 

0 0 

0 1/2 

1/2 0 1, 

0 1/2 l, 

q(n) (s,u) is the (s,u) entry in the n. th 
pawer of the matrix Q and its value follows from tl 
application of the method of i mages: 

j =+oo 
l: (-l)j 

j=-"' 

- vn(2j(k+3/s)-u,s)] (3. 25) 

where, once more , vn(t,r) = P(Sn = r-t] is given by 

Eq. (3.21) and where only finitely many nonzero terms 
exist. 

The relationship between the n·th powers of the 
matrices Q and Q' is 

where 0 is a column vector with al l clements equal 
to zero-and 

2 3 n-1 ln = (I+Q+Q +Q +, .. +Q ) · ! 1 

ti [ 1/2 0 0 ... 0] 

where, as usual, T stands for "transpose" and the 
symbol l is related to absorption i n the lower 
boundary. Later in this paper, the matrices Q' an 
Q for the case of one absorbing and one reflecting 
boundary will be denoted by P' and P, to avoid 
confusion with the case of two absorbing boundaries. 



Chapter IV 

RANGE ANALYSIS FOR INDEPENDENT, IDENTICALLY DISTRIBUTED INPUTS 

The concept of the range of.partial sums of 
random variables is of great importance in hydrology. 
Surprisingly, only a few results are known. such as 
the asymptotic distribution (Feller, 1951). mean range 
(Spitzer, 1956, and others) and the exact distribution 
obtained numerically for very small values of n 
(Yevjevich , 1965). 

In this chapter, a general approach to the exact 
distribution of the range is described. Starting with 
discrete random vari ables, the formulation is ext ended 
in the sequel to continuous random variables. Evalua­
tion of moments follows immediately from the procedure 
to be described and applications are shown for the 
case of some well known probability distributions. 

1. Discrete Net Inputs 

Consider the sequence of independent, i dentically 
distributed discrete random variables {Xt; t = 1, 
2, ... , n} and 

R = M - m = M + lm I n n n n n 

A.s defined previously, {St} are called partial 

sums, Mn is their (nonnegative) maximum, mn is 

their (nonpositive) minimum, and Rn is the range. 

In t his section, the joint distribution of Mn 

and m is initially discussed. From this discussion 
the di~tribution of the r ange follows directly. 

It is convenient to approach t he problem using a 
terminology similar to Moran's in the analysis of the 
finite reservoir. Let Xt denote the net input 
(i.e., input minus output) at discrete time . t into a 
reservoir of size (k+l), such that P(Xt = i) =pi. 

Clearly, Xt can assume negative vlaues . Further­

more, let this reservoir be such ti1at when full , it 
cont inues full with probability one , and when empty, 
it cont inues empty with probability one . 

Then the amount of water stored follows a simpl e 
homogeneous Markov chain with state space {0,1,2, ... , 
k+l) and one- step tra~sition matrix Q' as shown 
at the top of the next column. 

The elements in the first and last rows are ·t o 
be interpreted as 

1 '2, ... ,k) 
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'X 0 2 3 k-2 k-1 k k+1 

0 t 
-1 t -2 £ 

-3 ... . 1-k+2 £-k•l £_k 0 

0 Po p 
-1 p - 2 p-k+3 p-k•2 p-k+l 0 

2 0 p•l Po P. J p·kH p~k+3 p-k•2 0 

0 p+2 p+l Po p- k+S p-k•4 p-k+3 0 

k-2 0 p+k-3 p+k-4 p•k-3 Po P_l P.z 0 

k- 1 0 p+k- 2 p+k- 3 p•k-4 r., Po P.l 0 

k 0 p+k- 1 p•lt- 2 p •1: -'3 P.z p+l Po 0 

k+l 0 u+k u•k-l u•k-2 u+3 u+2 u., 

' 
.. 

and 

R. - j .= P_j + p-j-1 + P. j-2 + ... , (j = 1, 2, ... ,k). 

The matrix Q' can be partitioned as 

[! 
R.T 

;] Q.' Q 

T ( 4. 2) u. 

where 0 is a column vect or of size 
elements equal to zero, the symbol T 

T 0 T 
transpose, and where u. , ~ and Q 

k with all 
stands for 

are as fol lows: 

and 

Po P_l 

p+l Po 

p+2 p+l 

Q 

p+k-3 p+k-4 

p+k-2 p+k-3 

p+k- 1 p+k-2 

P_z 

P_l 

Po 

p+k-5 

p+k- 4 

p+k-3 

( 4. 3) 

p-k+3 p-k+2 p-k+l 

P-k+4 P.k+3 P-k+2 

p- k+S p-k+4 p-k+3 



The n-step transition matrix is then 

~ 
.f.T 2 n-1 

~(4 6) 

• (I +Q+Q + . .. +Q ) 

Q'n 
.· Qn 

T 2 n-1 u • (I+Q+Q + ... +Q ) 

where is the identity matrix . 

The matrix - Qn will be called the n-step 
"restricted" transition matrix for obvious reasons . 

1. 1 Joint Distribution of M and m . Keeping the 

q(n)(s,u) is same notation presented in Chapter II I , 

the (s,u) entry in the matrix Qn, and it denotes 
the probability of a transition from the state 
u = 1,2, . . . ,k to the state s = 1, 2, ... ,k, without 
passing through the st ates zero or (k+l) . 

s=k 
Then I: q(n)(s,u) denotes the pPobability 

s=l 
that the system does not Peach the boundaries (states 
zePO and k+l) in the fiPst n steps. given the ini­
tial state u. But this is cleaPZy the joint proba­
biZity P(Mn 5_ k-u, /mn /5.. u- 1), whePe the symboZ 
/m I stands fop the absolute value of m . n n 

I t is convenient to use the index k to 
s=k 

emphasize that I: q~n)(s,u) is the sum of allele­
s =l 

ments of the u ·th column i n t he n·th power of t he 
matrix Q, of size k. 

The probabil i t y mass function P(Mn = k-u, Jmn/ 

u-1) is given by 

but 

and 

P(Mn = k- u, /mn/ 5_ u-1) 

- P(Mn = k-u, /mn l 5_ u- 2) 

P(Mn k-u, /mn / 5_ u-1) = P(Mn 5_ k-u, lmn l 5_ u- 1) 

- P(M < k-u-1 Jm I < u- 1) 
n - ' n -

k-u, lm / < u- 2) = P(M < k-u 
n - n - ' 

- P(M < k-u-1, lm I < u-2) . n - n -

lm / < u - 2) n -

and thus 

P(Mn = k-u, lmn / = u-1) = P(Mn 5_ k-u, /mn l 5_ u-1) 

- P(Mn 5_k-u- l, /mn / 5_ u-1) - P(Mn 5_ k-u, Jmn / 5_ u-2) 

+ P(M < k-u-1, /m I < u-2) n - n -

where all the terms in the right hand side can be 
wr itten as sums of elements of particular columns of 
n-step "restricted" transition matrices of sizes 
k,k- 1 and k-2 : 
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k-u, /m / = u- 1) n 

s=k-1 
q (n) !: (s ,u) 

s= 1 k-1 

s=k-1 

s=k 
r qk (n) (s, u) 

s=l 

s=k-2 
I: (n) 

qk-1 (s,u- 1) + I: (n) 
qk-2 (s,u-1) 

s= 1 s=l 
(4 . 7) 

Notice that (ill) 
qk-1 (s ,u-1) and (n) 

qk- 2 (s ,u-1) are 

different, because they are entries in matrices of 
different si zes . Notice also t hat once the joint dis­
tribut i on of Mn and mn is known, thei r marginal 

distributions can be obt ained eas i ly . 

Al though the underlying concepts are very simple, 
t heir exposition may be obscured by t he unfortunately 
compl icated notation. To help c l ari fy the procedur e 
o~tlined, a simple example is given. 

Example 4. 1 

The joint distribution of Mn and mn wil l be 

found i n the case n = 3, for the fo l lowing binomially 
distributed net input : 

4c(2+i) · (1/2)
4 

for i - 2,-1,0,1,2 

P(Xt i) = 0 otherwise. 

The symbol C stands for "combinat.ion." For 
4! 

i nstance, l 2 = ill! = 6 . Notice that E (Xt) Ql 

and var(Xt) = l . 

Only two particular values are evaluated in 
detail . The procedure to f ind all other probability 
masses i s exact ly the same and the final results are 
shown i n Table 4.1. 

To find, say, P(M
3 

1, 1m
3

/ 

furnishes 

2), Eq. (4. 7) 

s=4 
q (3) 

s=3 
q (3) p (~13 1 ' Jm3/ 2) I: (s, 3) - l: ( s' 3) 

s=l 4 s= l 3 

s=3 (3) s=2 
q (3) r q3 (s , 2) + r (s, 2) (4 .8) 

s=l s=l 2 

The one-step "rest rict ed" transition matrix 
(Eq . (4. 5)) in this cas~ is 

6/16 
I 

4/161 1/16 0 0 0 

4/16_ 6/16+- ~6 1/16 0 0 

1/16 4/16 1 6/16 4/16 1/16 0 

0 1/16 1 4/16 6/16 4/16 1/16 

0 0 I 1/16 4/16 6/16 4/16 

0 0 0 1/16 4/16 6/16 



A matrix of size 6 was shown for convenience . 
Actually only matrices · of sizes 2, 3, and 4 are used 
at this point. The dotted line indicates how to ob­
tain the matrix of size 2 from the given matrix. Sim­
ilarly matrices of sizes 3 an~ 4 can be defined. 

The terms in the right hand side of Eq. (4.8) 
are 

6/ lS 4/16 1/16 0 

soc4 q! 3
) (s,3) 

4/16 
E 

6/16 4/16 1/16 
.. [11111 

s=1 1/16 4/16 6/16 4/16 

0 1/16 4/16 6/16 

"' 2755/4096 

s•3 

l: q.>~3) (s,3) (111] s=1 

• 1619/4096 

s=3 
l: q (3) (s,2) = 

s•l 3 E
6 

[111) 16 

16 

• 2096/4096 

4/16 

6/16 

4/16 

4/16 

6/16 

4/16 

5"2 
l: q~3)(s,2) ~ (11] 

s:1 

f6ll6 4/16l 3 ro] 
~16 6/~ ~ 

1000/4096 

and thus 

P(M3 • 1, lm3 1 " 2) • (2755 - 1619 

- 2096 + 1000)/4096 a 40/4096 

For illustration, another probability is 
evaluated: 

where 

4 6 4 0 0 

S• 6 1 4 6 4 0 
r q~3)(s,3) I 3 

= (16) . [1ll111) 
s: J 0 1 4 6 4 

0 0 I 4 6 4 

0 0 0 .t 6 

0 

0 

0 

0 

3 
0 

0 

1 

0 

3672 
"4096 
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6 4 1 0 0 3 0 

4 6 4 1 0 0 
s=5 q?) {s,3) (116) 3. [11111] 3416 r 1 4 6 4 1 = 4096 s=l 

0 1 4 6 4 0 

0 0 4 6 0 

6 4 1 0 0 
3 

0 

4 6 4 1 0 
s=S 

1 3 3011 r q?) (s , 2) • (T6) . [11111] 1 4 6 4 1 0 . --4096 s=1 
0 1 4 6 4 0 

0 0 1 4 6 0 

6 4 0 
3 

0 

s=~ q!3)(s,2) (116)3 . [1111) 
4 6 4 2755 r " .. 4096 s: 1 1 4 6 4 0 

0 1 4 6 0 

and thus 

P(~t3 = 3, lm3 1 = 2) = (3672-3416-3011+2755)/4096 .. 0. 

In a similar fashion, all values s hown in 
Table 4.1 can be easily evaluated. 

TABLE ·1. 1 JOINT DISTRIBUTION OF M
3 

AND m
3 

FOR A 

PARTICULAR BINOMIAL NET INPUT* 

~ 0 1 2 3 4 5 6 7 

0 216 784 619 252 71 12 1 0 
1 784 312 40 4 0 0 0 0 
2 619 40 2 0 0 0 0 0 
3 252 4 0 0 0 0 0 0 
4 71 0 0 0 0 0 0 0 
s 12 0 0 0 0 0 0 0 
6 

i 
1 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 

*Entries in the table must be divided by 4096 

1. 2 Distribution of the Range. Now that the joint 
distribution of M and lm I has been found, the n n 
distribution of their s um follows directly: 

u=k 
P(Rn " k- 1) " l: P(R = k- 1, lm I u-1) 

u=l n n 
u=k 

• !: P(Mn = k- u, lmn I = u-1) 
U" l 

l 
:• 

! ' 

I 
0 

I 

l 
I 

I' 

I ' 

, I ., . 
' 



because 

P(M + lm I n n 

,. k-1, lm ( Q u-1) 
n 

Using Eq. (4. 7), 

• u~k ( s;k q(n) 
P(Rn • k-1) u=1 s=l k (s,u) -

s=k-1 
I: 

s=1 

(n) 
qk-1 (s ,u) 

or 

or, 

I: q(n) (s,u-1) + 1: qk(~2) (s,u-1) 
s• k-1 sc k-2 1 
s=1 k- 1 s=1 

u=k s=k (n) 
P(Rn • k-1) = 1: E qk (s,u) 

u=l s=l 

+ 

f inally, 

P(Rn :. 

u=k-1 s=k- 1 
1: r q(n) {s ,u) 

u=l s=1 k-l 

u=k s=k- 1 (n) 
1: 1: qk_ 1 (s , u-1) 

u=2 s=l 

u=k-1 s•k-2 
(n) 1: r qk-2 (s ,u-1) 

u=2 s=l 

u=k s•k (n) 
k-1) = l: l: qk (s,u) 

u=l s=l 

u: k-1 s:k-1 
- 2 1: I: 

(n) 
qk-1 (s,u) 

u=l s• l 

+ 
u:k- 2 s=k-2 

l: 1: 
u= 1 s= 1 

(n) 
qk- 2 (s,u) 

where special attention should be paid to the fact 
that the adjustment in the values of u in the above 
summations is valid. 

Clearly 
u=j s: j (n ) 

1: 1: q. (s,u) is the sum of all 
u• l s:l J 

clements i n an n-step "restrict ed" transition matrix 
of size j . Using an obvious notation , 

P(Rn = k- 1) = ~~n) 2~(n) + >.(n) 
k-1 k- 2 

or equivalently, 

~>here 

P(Rn • k) >.(n) - 2>.(n) + A(n) 
k+l k k-1 

A~n) is understood to be zero for 
) 

(4 . 9) 

'j ~ 0 . 

A simple example is now given for illustration 
purposes . 
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Example 4.2 

The distribution of the range of partial sums 
wi 11 be found in the case n = 3, for the same net 
input of Example 4 . 1: 

From Table 4 . 1, it is obvious that 

P(R3 = 0) 

P(R3 • 1) 

P (R
3 

= 2) 

P (R
3 

• 3) • 

P (R
3 

4) 

P(R
3 

• 5) 

P(R
3 

6) 

P(R
3 
~ 7) 

216/4096 

(i84 + 784)/4096 = 1568/4096 

(619 + 312 + 619)/4096 = 1550/4096 

(252 + 40 + 40 + 252)/4096 • 584/4096 

(71 + 4 + 2 + 4 + 71)/ 4096 152/4096 

(12 + 12)/4096 .. 24/4096 

(1 + 1)/4096 = 2/4096 

0 

Equation (4.9) is used to verify some of these 
results. For instance, 3 

6 4 1 0 1 

1 3 4 6 4 1 1 
P(R3 • 3) • (16) . [1 1 1 1] 

4 6 4 1 

0 1 4 6 1 

1 3 
- 2 . (16) (1 1 1] 

[: : :J lJ 
[: :]'[:] 

9252 5334 2000 584 
= 4096 - 2 . 4096 + 4096 = 4096 

and 3 

P(R3 D 1) .. cti->3 
(1 1] e :J GJ 

- 2 . (166)3 + 0 - 2000 - 2 . 216 + 0 .. 1568 
- 4096 4096 4096 

and, of course , 

P(R • 0) • (JL)
3 - 2 · 0 + 0 = ~ 3 16 4096 

Although the above example was given for 
independent and symmetric net input with zero expec­
tation, Eq. (4.9) holds in general. As a matter of 
fact, it holds even for dependent i nputs , but in this 
case the n- step transition matrix is not simply the 
n·th power of the one-step transition matrix (see 
Chapter III, Section 1.3). 

Using Eq. (4 .9), the cumulative distribution 
function (c .d.f.) of the range can be readily obtained 
as 



r 
I P(~ ~ k) P(Rn = 0) + P(Rn = 1) + P(Rn = 2) 

+ ••• + P(Rn = k) 

A(n) + (A (n) - 2~(n) ) 
1 2 1 

+ (A (n) 
3 

- 2A (n) 
2 

+"in)) + ••• + (~~i 

A (n) - A (n) 
k+l k 

nCn) 
k 

+ A (n)) 
k-1 

( 4. 10) 

Thus it is clear that there exists a value K 
sufficiently large so that P(Rn c K) = 0 and 

P(Rn _< K) • A(n) - A(n) ~ l 
K+l K 

or equivalently, 

A (n) = 1 + A (J;t) 
K+l K • 

The m·th moment of the range is given by 

E(Rm) = P(R = 1) + 2m P(Rn = 2) 
n n 

+ 3m · P(R ~ 3) + 
n 

For m = 1, the expectation of the range is 

(4.11) 

E(Rn) • P(Rn = 1) + 2 · P(Rn • 2) + 3 · P(Rn = 3) + ... 

or , using a large value K such that P(Rn .. K) • 0 

and P(Rn ~ K) = 1, 

+ • • • + K • P (Rn . = K) 

·Using Eq. (4.9), the mean range simplifies to 

E(R) • KA (n) - (K+l) A (n) 
n K+l K 

But, from Eq. (4.11), A~~{= 1 + Ain) and thus 

( 4 .12) 

·Similarly, the second moment of the range is 

E(R2) n P(Rn = 1) + 4. P(Rn = 2) 

+ 9 · P(Rn = 3) + ... + K2. P(Rn " K) 

,. 2A (n) 
1 

+ 2A (n) 
2 

+ 2A (n) 
3 

+ ... + 2A (n) + K2 -
K-1 (2K - 1) A (n) 

K 

where Eqs. (4.9) and (4.11) have been used. 

After some elementary manipulations . the second 
moment of the range can be rewritten as 
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K-1 
E(R2) ~ E(R ) + 2 t [E(R) - (k- A(n))] 

n n k=l n k 
(4 .13) 

Some useful relationships can now be derived. 

The relationship between Q'n and Qn has been 

shown in Eq. (4.6). But Q'n is a transition matrix 
and thus the elements of each column add to unity. 

Consequentl y, the sum of all elements in Q' n is 
equal to its size, namely, k+2, and the following re­
lationship holds: 

T 2 n-1 T n 
u (I + Q + Q + ... + Q ) .!. + .!. Q .!. 

+ lT (I + Q + Q2 + ... + Qn-1).!. = k 

where 1 is a column vector of size k with all 

elements equal to 1, and .!.TQn.!. is clearly A~n). 

Using the index k to emphasize that the vectors 
and matrices i nvolved have size k, one has .. 
A~n) = k - (~ + ~)(Ik + Qk + Q~ + ... + Q~-1) .!_ k 

( 4.14) 

Making k = K (large) in Eq. (4.14) , and using 
Eq. {4.12), 

.•. + Q n-l)l 
K -K 

or, equivalently, 

Equation (4.15) indicates that it is easier to 
study the difference between consecutive values of the 
mean range than to study the mean range itself. This 
conclusion is apparent also from Spitzer' s result 
(1956). 

For symmetric inputs wi th zero expectation 
Eq. ( 4.15) s implifies to 

E(R) - E(R 1 

1
) • 2 uT Qn-l 1 • 2 lT Qn- l 1 (4.16) 

n n- K K - K K K - K 

Using Eqs . (4.13) and (4.14) , similar r esul ts can 
be found for the second moment: 

2 2 T T n-1 K- l T T l 
E(Rn)-E(Rn-1) " (uK+lK)QK ~+2 k:l [(uK+!K) Q~- ~ 

(4.17) 

and for symmetric inputs with zero expectation 

+ 4 
k• K-1 

t [!T Qn- 1 l _ LT Qn- 1 l ] 
k=l K K -K I< k - k 

(4 .18) 

1.3 Range Analysis for the Random Walk Process. In 
this particular case, the net i nput Xt is such that 

,• 

i'i 

' !•l 



P(Xt • i) l/2 (i "' -1, + 1) 

and thus , 

E(Xt) = 0, and va;(Xt) = 1 

Some interesting results can be derived to be 
used later in this paper. 

The one-step "restricted" transition matrix in 
this case i s 

0 1/2 0 0 0 0 

1/2 0 1/2 0 0 0 

0 1/2 0 0 0 0 

Q = 

0 0 0 0 1/2 0 

0 0 0 1/2 0 1/2 

0 0 0 0 1/2 0 

and the n-step "restricted" transition matrix can be 
found by the method of images , as s hown in Chapter 
III. Thus, the (s,u) entry in the n·th power of the 
k by k matrix Q is 

q~n)(s ,u) 

where 

j:+CD 
!: {vn[2j (k+l) + u,s] 

j =-oo 

- vn [2j(k+l) - u,s]} (4.19) 

v (r, t )= C · (1/2)
0 

• C · (l/2)n n n (n+r-t)/2 n (n+t-r)/2 · 

The probability distribution function of Rn is 

P(Rn • k) • 1(n) - 21(n) + A(n) 
k+1 k k-1 

where 

u=k s=k (n) 
l~n) "' !: !: qk (s,u) 

u=l s=l 

u=k s=k j=+"' 
= !: E . I: {vn [2j (k+l) + u,s] 

u=l s= l J =- co 

- vn [2j(k + l) - u,s]} 

with 1 (n) and 1 (n) 
k+ 1 k- 1 

similarly defined . 

To find the mean value of the range, Eq . (4.16), 
s l ightly modified, can be used: 

t.T n 
E(Rn+l) - E(Rn) = 2 K QK .!.K 

Recal ling that l.~ = [1/2 0 0 ... 0 0), it follows 

that [E(Rn+l) - E(Rn)] is simply t he sum of all 

clements i n t he first row of the matrix Q~. But the 
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matrix is symmetric and thus the first row is equal 
to the first column and then 

S"'K 
E(Rn+l ) - E(Rn) • I: q~n) (s,l) (4.20) 

s=l 

T n s=k ( ) 
For general k, 2f..k Qk .!.k = l: qkn (s,l) can 

s=1 be found using Eq . (4.19): 

s=k s=k j =+00 

z: q~n>cs,Il 
s=l 

I: E {v (2j(k + 1) + l,s] 
s=l j =-"' n 

v n ( 2j (k + 1) - 1, s] } 

j•+ot 
I: (v (2j(k + 1) + 1,1) 

j =-oo n 

+ v [2j(k + 1) + 1,2] 
n .. 

- v (2j(k + 1) - 1, k-1] 
n 

- v n [2j (k + 1) - l,k)) (4 . 21) 

In particular, when k = K (recall t hat K is 
a very large number) , it follows from the expression 
defining v n (r, t) that the only nonze1·o val ues in 

Eq . (4.21) are vn(2j(K+l) + 1,1] and vn(2j(K+l) + 

1,2] for the particular value j = 0. Thus, 
Eq. (4 . 20) becomes 

E(Rn+l) - E(Rn) = vn(l,l) + vn( l,2) 

= ncn/2 . (l/2) n + nc(n-l)/2 . (l/2)n 
( 4. 22) 

where only one of the terms at the right hand side is 
nonzero, depending upon n being odd or even. 

Simi l arl y , to find the second moment of the 
range, Eq . (4.18). s l ightly modified, can be used: 

is given by Eq . (4 . 21) and 

n 
has been shown to equal n Cn/2 · (1/ 2) 

n 
+ nc(n-l)/2 (1/2) = vn{l,l) + vn(l ,2) . 

Thus, 

E(R~+1 ) - E(R~) = vn(l,l) + vn (l,2) 

• 2 
k•K-1 

I: {v {1,1) + v
0

{1 , 2) 
k=l n 

+lD 

(4.23) 

E [v (2j (k+l) + 1,1) + v (2j (k+l) + 1,2) 
j =-oo n n 

- vn(2j(k+l) - 1, k- 1) - vn(2j(k+l) - 1; k)]} 



n n 
where vn(r,t) = nc (n+r~t)/2 (1/2) " nc(n+t-r)/2(1/2). 
Equations (4.22) and (4 . 23), used recursi vely, furnish 
the mean range and the second moment of the range. 

Table 4.2 summarizes rhe values of E(R ), E(R
2

) and 
n n 

var(Rn) for n = 1,2, ... , 100. 

Taking into account that the r andom walk process 
is the simplest possible discrete input, it should be 
clear by now that to obtain results explicitly (es­
pecially the second moment of the r ange) i s not an 
easy task. Even when such results are found, as it 
was just done for the random walk precess, final 
equations may be so complicated that one would be 
better off using directly the more general results 
(Eq. (4.9) for the distribution of the range , and Eqs. 
(4.15) and (4.17) for the first two moments), solving 
the problem numerically. 

1.4 Closing remarks. In this section, a general 
approach was described to obtained the joint distribu­
tion of the maximum and minimum of partial sums of 
discrete, identically distributted, independent random 
variables (Eq. (4. 7) ). With minor modifications, it 
will be shown that the approach holds for dependent 
random variables as well. 

From the joint distribution of Mn and mn, the 

distribution of the range (and consequently, its mo­
ments ) was found (Eqs. (4. 19), (4 .15) and (4.17)). 

The approach described was applied to the simplest 
possible input, to illustrate that the usefulness of 
some results in closed form may be questionable. 

A final remark can be made, having to do with the 
interpretation of the i·th element (i c 1,2, ... , k) 

TABLE 4. 2 f.()MENTS OF 11iE RANGE FOR 11iE RANDOM WALK PROCESS 

n E(R) E(R2) VAR(Rn) n .. E(R) E(R2) VllR(Rn) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
so 

1.0000 
1.5000 
2.0000 
2.3750 
2.7500 
3.0625 
3.3750 
3.6484 
3.9219 
4.1680 
4.4141 
4.6396 
4.8652 
5. 0747 . 
5.2842 
5.4806 
5.6769 
5. 8624 
6.0479 
6.2241 
6.4003 
6.5685 
6.7367 
6.8978 
7.0590 
7.2140 
7. 3690 
7.5184 
7.6679 
7.8123 
7.9568 
8.0967 
8.2367 
8.3725 
8.5084 
8.6404 
8.7725 
8.9011 
9.0297 
9.1550 
9.2804 
9.4028 
9.5252 
9.6448 
9.7644 
9.8814 
9.9984 

10.1130 
10.2275 
10.3398 

1.0000 
2.5000 
4.5000 
6.3750 
8.5000 

10.5625 
12.7812 
14.9453 
17 . 2266 
19.4570 
21.7832 
24 . 0625 
26.4229 
28.7402 
31 . 1277 
33.4758 
35.8854 
38.2590 
40.6872 
43.0822 
45.5264 
47.9397 
50.3978 
52.8271 
55.2974 
57.7407 
60.2219 
62.6777 
65.1687 
67.6356 
70.1355 
72.6125 
75.1204 
77.6065 
80.1218 
82.6163 
85.1384 
87.6406 
90.1689 
92.6782 
95.2123 
97.7281 

100.2676 
102.7896 
105.3341 
107.8618 
110.4110 
112.9440 
115.4977 
118.0357 

0.0000 
0.2500 
0.5000 
0.7344 
0.9375 
1.1836 
1.3906 
1. 6342 
1.8455 
2.0851 
2.2993 
2.5362 
2.7523 
2.9876 
3.2051 
3.4393 
3.6578 
3. 8911 
4.1103 
4.3430 
4.5629 
4.7950 
5.0153 
5.2470 
5.4678 
5.6990 
5.9202 
6.1510 
6. 3725 
6.6031 
6.8249 
7.0552 
7. 2772 
7.5073 
7.7296 
7 . 9594 
8. 1819 
8.4115 
8.6342 
8.8637 
9.0865 
9.3158 
9.5388 
9.7680 
9.9911 

10.2201 
10.4434 
10.6723 
10.8956 
11. 1244 

21 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

10.4521 
10.5622 
10.6723 
10.7804 
10.8885 
10.9946 
11.1007 
] l. 2051 
11.3094 
11.4120 
11.5145 
11.6155 
11.7164 
11.8157 
11.9151 
12.0129 
12.1108 
12.2072 
12.3036 
12.3986 
12.4936 
12.5873 
12.6810 
12.7735 
12.8659 
12.9571 
13.0484 
13.1384 
13.2285 
13.3174 
13.4063 
13.4942 
13.5820 
13.6688 
13.7556 
13.8414 
13.9272 
14.0120 
14.0968 
14.1807 
14.2645 
14.3475 
14.4305 
14.5125 
14.5946 
14.6758 
14.7571 
14.8375 
14.9178 
14.9974 

120.5936 
123.1363 
125.6982 
128.2453 
130.8109 
133.3622 
135.9313 
138. 4866 
141 . 0590 
143.6181 
146.1938 
148.7564 
l 51.3351 
153.9012 
156.4828 
159.0521 
161.6365 
164. 2089 
166.7960 
169.3713 
171.9609 
174.5391 
177.1312 
179.7121 
182.3065 
184.8901 
187.4867 
190.0728 
192.6716 
195.2601 
197.8610 
200.4518 
203.0547 
205.6477 
208.2526 
210.8478 
213.4546 
216.0519 
218.6605 
221.2597 
223.8701 
226.4713 
229.0834 
231.6865 
234.3002 
236.9051 
239.5204 
242.1271 
244 . 7440 
247.3524 

11 . 3479 
11.5766 
11.8002 
12.0288 
12.2524 
12.4810 
12.7047 
12.9331 
13.1570 
13.3853 
13.6092 
13.8375 
14.0615 
14.2897 
14.5137 
14.7419 
14.9660 
15. 1941 
15.4182 
15.6463 
15.8705 
16.0985 
16. 3227 
16. 5506 
16.7749 
17.0028 
17.2272 
17.4550 
17.6794 
17.9072 
18.1317 
18. 3594 
18.5839 
18.8116 
19.0361 
19.2638 
19.4884 
19.7160 
19.9406 
20.1682 
20.3929 
20.6204 
20.8451 
21.0726 
21.2973 
21.5249 
21.7496 
21.9771 
22.2018 
22.4293 

' I • 
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in the vector ,.T Qn-:1 
"'k k . From Eq. (4.6) , it is clear 

that the i•th element in the vector 
T 2 n~ 
~ (Ik + Qk + Qk + ··· + Qk· ) is the probability 
that the system is at state (k+l) , at discrete time 
n, given that the initial sta~ was i. The i·th 

· h T 2 n-2 element ~n t e vector ~ (Ik + Qk + Qk + · ·· + Qk ) 

can be similarly interpreted and consequently, the 
T n-1 

i·t~ element in the vector ~ Qk is the proba-

bility that the system, starting at state i, reaches 
state (k+l) in exactly n steps , for the first time, 
without ever passing through state zero. Using the 
jargon of the followers of Moran, this is the proba­
bility of first overflow occurring at time n, before 
emptiness, given the initial state i of a finite 
reservoir of size (k+l). 

Similarly, the i·th element in the vector 
T n-1 £k Qk is the probability of first emptiness occur-

ring at time n, before overflow, given the initial 
state i of a finite reservoir of size (k+l). 

Equation (4.17) indicates that the second moment 
of the range can be written in terms of finite rese·r­
voir concepts like the probabilities of first empti­
ness before overflow and of first overflow before 
empt iness. 

2. Continuous Net Inputs 

For illustration purposes, a convenient approach 
to the range analysis for continuous inputs is to 
start with a convenient "discretization" of input, to 
find the solution for this discrete case, and to i m­
pose the conditions under which this solution tends to 
the solution of the continuous case. 

Normally distributed net inputs are studied 
first . The distribution of R

1 
and R

2 
are derived 

and the distribution of R is shown to depend on 
integrals that do not exis~ in closed form, thus sug­
gesting that numerical evaluation is unavoidable. 
Actually, even the distribution of R

2 
depends on an 

i ntegral that does not exist in closed form, namely, 
the cumulative distribution function (c.d.f.) of the 
normal distribution, which is, of course , tabulated. 

The second type of net input studied is the 
Laplace distributed input, because the integrals in­
volved can be easily evaluated and results in closed 
form are obtainable. 

Finally, exponentially distributed inputs are 
studied, to illustrate that for moderately large 
values of n, the type of input is relatively uni m­
portant. The exponential distribution is chosen as a 
drastic departure from normality. The case of gamma 
distributions which are important in practice falls 
between the exponential case and the normal case. 

2.1 Normally Distributed Net Inputs. Consider the 
following binomially distributed net input, for m 
even: 

P(Xt i) P. c (l/ 2)m ( 4. 24) 
l m ci +i) 

for i m m 
1, ... ' 0, .. . , m 1, m 

2 • - - + 2 - 2 2 
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Notice that 

Furthermore, notice that the distribution is symmetri~ 
i.e ., pi • p_i. Thus the one-step "restricted" tran-

sition matrix can be written as 

Po pl P2 

pl Po pl 

p2 pl Po 

Q • 

pk-3 pk-4 pk-5 

pk-2 pk-3 pk-4 

pk-1 pk-2 pk-3 

pk-3 pk-2 pk-1 

pk-4 pk-3 pk- 2 

pk-5 pk-4 pk-3 

Using Eq. (4.9), for n: 1, and using the symbol 
' to denote the discrete range, 

P(Rl ~ k) 

Recalling that Ak+l' Ak and Ak-l are the sums of 
all elements in the one-step "restricted" transition 
matrices of s izes k+l, k and k - 1, r espectively, 
one has 

P (Ri • k) 

or 

k) 2 C (l/2)m 
m Cr +k) 

For large m, the normal approximation to the 
binomial distribution can be used and 

P(R ' = k) ~ ..i. t (~) 
1 rm rm 

2 
where ;(v) = --1- e-v / 2 is the density function of 

& 
the normal distribution. 

It is convenient to express the range in units 
of the standard deviation of the net input, and thus 

2k 2R' 
Changi~g variables y . -- and R = _ 1 and rm 1 rm 

then taking the limit as m ... oo 

fR (y) 
4 ;(y) 

!iii 
2t (y) =-- -2 ( 4. 25) 

1 /iii 

Now moments can be easily evaluated: 

!Ij 
11 0 

-1/2 id 
Y e y If_ 

11 



and 

: 
Equation (4.25) is an already known result: the 

probability density function (p.d.f. ) of the range for 
n R 1 is equal to the p.d.f. of the absolute value of 
the net input. 

To f~nd the distribution of R2, Eq. {4o9) is 
used again: 

P(R
2
• = k) = A(2)- 2A(2) + A(2) 

k+l k k-1 

A~2) can be written as !T Q~ ! where 

is a column vector of s i ze k with all elements 

equal to unity, and !T is its transpose: 

and 

where So is the sum of e lements in th'e i •th column 
1 of Qko 

Then, 

Similarly, 

and 

i•k 2 
l: So 

1 

where si (i = 1, 2, ... , k) is the sum of elements in 

the i•th column of Qk and sk+l is the sum of ele­

ments in the la~t column of Qk+l" 

Then, 

Similarly, 

and 

i • k 2 
l: (slo • Pk+l-1") 

i"l 

T 
! ~-1 = [sl - Pk-1 5 2 - Pk-2 · · • • .sk-1 - P1l 

where the si ' s have been defined previously. 

Then 

'(2) 
"k-1 ,. 

i =k- 1 
l: 

i=1 

and finally 

I k) ,(2) - 2·' {2) A(2) 
P(Rz '" "k+l "k + k-1 

2 i=k 2 
= sk+1 + 1: (si + pk+l-i) 

:i:a} 

i=k 2 i=k- 1 2 - 2 l: So + 1: (si -pk-i) 
i=l l i=1 

After some elementary transformations, this equation 
can be rewritten as 

P (Ri ,. k) = 4 pk t~ + p1 + .• . + pk-1 + p~ ) 

+ 2(
PoPk P~cPo 

2 + plpk-1 + . .. + pk-lpl + --)(4. 26) 
2 

Proceeding as bsfore, the range is expressed in 
units of the standard deviation of the input, the 

, n~rmal approximation to the binomial distribution is 
i ntroducedr a convenient change of variables i s made 
and the limit as m + ~ is considered. The result 
is , then, 
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y y 
fR (y) • 4+(y) f +(u) du + 2 f +(u)+(y-u) du 

2 0 0 

where 

+(y) .. 

y 

1 

{fi 

1 2 --y e 2 , 

] +(u)du 
0 

Yf 
0! +(u) du - +(u) du = ~(y) - 1/2, 

and 

Y. Y 1 2 l 2 

f f 1 - - u 1 - - (y-u) +(u)+(y-u)du = - e 2 - e 2 du 
0 0 rz; rz; 

1 _!/ Yf 1 _!cl2u-y//2) 2du 
-e 4 -e 2 
,12; 0 & 

+yjl2 
• ...!. • (y/12) J 

12-rr -y/1:2 
+ (w) dw 

1 .. - • (y/l'i) [+(y/12) - . (-y//2)] 
l'i 

l'i. (y/12) [t(y/l'i) - l/2). 

Finally , one has 

fR (y) = 4t(Y) (t(y) - 1/2) 
2 

1/2) 0 

(4 0 27) 

For completeness, t he first two moments of R2 will be derived, using Eq. (4.27) : 



or 

+ 

f 4y~(y)t(y) dy :-
0 

f 2y~(y) dy 
0 

. 
f 212 y+(y/12)t(y/12) dy - f 12 y+(y/12) dy 
0 0 

(4 + 412) f y+(y)t (y) dy - (2 + 212) f y+(y)dy 
0 0 

• (4 + 412) • - 1- (1 + .....!.. ) - (2 + u'2) 
2/2,1 12 

1 

,12; 

which agrees with Anis and Lloyd (1953). 

Simi larly, 

E(R~) 
00 

I 4 l + <Ylt fy) dy - f 2 iHY) dy 
0 0 

+ j 212 / + (y/l2)t (y//2) 
co 

12 y 2Hy/l2 )dy dy - f 

where 

and 

so that 

0 0 

.. .. 
(4+8) f l+(y)t(y) dy - (2+4)/ y2+(y) 

0 

00 2 
f y ~(y) dy = 1/2 
0 

00 2 l Y t(Y)t(y) dy = ~ + 4~ , 

3 3 =- +-2 1! 

0 
dy 

The purpose of the derivation as presented here 
is to emphasize similarities between the discrete and 
the continuous cases, because the former can be used 
as a numerical integration algorithm to solve the 
latter. 

It is obvious from Eq. (4.27) that to evaluate 
fR (y) for a particular y u a one has to pick the 

2 
values of <l>(a) and <l>(a/12) from tables, because 

a 
the integral f t(Y) dy does not exist in closed _ .. 
form. Consequently, in this sense, closed form solu­
tions for the range of partial sums of normal vari­
ables do not exist, except for n • 1. This fact can 
be once more illustrated by studying the range for 
n = 3 . 
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As before, the solution consists in writing: 

). (3) • T Qk~l(.!_T Qk+l)T k+l (!.. Qk+l) 

.: ). (3) 
. k .. (!_T Qk) Q • 

k 
(1 T Q ) T 
- k 

). (3) T T T 
and k-1 • C.!. Qk-1) Qk-1 · (.!. Qk-1) 

There is a considerable amount of algebraic work 
involved. After simplifications , the range is ex­
pressed in units of the standard deviation of the i n­
put, the normal approximation is introduced , a change 
of variables is performed and the limit as m ~ oo is 
taken. The final result is 

fR (y) = ~(y) + 4t (Y) [ t(y) - 1/2]
2 

3 

.. 

where 

+ 4~ (y) <l>(y/12) [t(y/12) - 1] 

+ 412+(y//2) [t(y) - l/2)[+(y/l2) - 1/2] 

+ 12Hy//3)T(y) 

+(v) 

v 1 2 
t(v) "' f - 1- e- 2u du 

-co /211 

T(v) = J +Cfl u -./f v)[t(l2 v-u/12) - 4>(-u/12)) du. 
0 

Clearly both <l>(v) and T(v) do not exist in 
closed forms. Furthermore, to the knowledge of this 
writer, T(y) has not been previously tabulated . 
Thus , the next step would be to tabulate such a func­
tion, solving the integral by numerical methods. But 
this would solve only the case n = 3. For n = 4, 
a new integral would be introduced, which would also 
have to be tabulated, and so on. 

An obvious al ternative approach is to solve the 
whole function fR (y) numerically, rather than 

n 
solving numerically only parts of it, such as T(y) 
in fR (y). This can be done by using a binomial in-

3 
put such as the one given by Eq. (4.24), for a large 
value of m. 

The selection of m is tantamount to the 
select ion of the increment Ay in a conventional 
numerical integration algorithm. It can be shown 
that in order to obtain a specified accuracy over a 
wide range of values of n, m can be chosen inversely 
proportional to n. Then, it is clear that there 
exists a value of n sufficiently large so that m 
can be very small . Thus, for large n, even the 
simple random walk is a good approximation, and that 
was essentially Feller' s approach (1951) to the 
asympt otic distribution of the range of par tial sums 
of i ndependent random variables. 



In this paper, the value m " 100 was selected. 
The numerical results for· n • 2' were compared with 
the exact results from Eq. (4.27), and the accuracywas 
considered satisfactory . The value m = 100 was kept 
constant and n varied from 2 tO 50. Consequently, 
the accuracy, which was satisfactory for n = 2, in­
creased with the increase of n. 

The program for this numerical evaluation is 
extremely simple, because the matrix Q is obviously 
patterned, and thus it can be represented simply by a 
vector . Instead of powers of Q the program computes 

vectors lT Qn and thus computer memory requirements 
are minimal. 

Figures 4.1, 4.2 and 4.3 shown the probability 
density function of the range for n = 2 and 3, n a 4 
and 5, and n = 6 and 7, respectively. Figure 4.4 
·shows the density of the range for n • 8 and com­
pares some of the density functions shown in previous 
figures. 

Figure 4.5 shows the probability density function 
of the range for normal net inputs and n = 2, n = 8 
and n = SO, as compared with tho asymptotic density 
found by Feller (1951). A change of variables was 
necessary to make such comparison: the range is ex­
pressed in units of ln. 

It is interesting to study the distribution of 
the standardized range, i.e., the distribution of 

Rn - E(Rn) 

[Var(R )] 112 
n 

fR (y) z 
0.50 

1.0 2.0 3 .0 

This was done for n = 2,3, ... , 6 and for the 
asymptotic range as well. In Figs. 4.6, 4.7, 4.8, 
4.9, and 4.10, the standardized asymptotic density 
function is compared to the standardized density func­
tion for n • 2, 3, 4, S, and 6, respectively. The 
conclusion is that the asymptotic result is a remark­
ably good approximation even for n as low as 2, when 
the influence of the first and second moments has been 
removed. For n = 6 the standardized exact density 
and the standardized asymptotic density are practically 
identical. 

Consequently, if one desires to have a result in 
closed form for the density of the range, i n the case 
of normal net inputs, it suffices to correct the asymp­
totic result for the exact mean and variance. The 
exact mean is known (Anis and Lloyd , 1953) to be 

f'ii=n 
E (R ) • .J:; I: 

n 'If i=l 
i-1/2 

and the exact second moment obtained numerically is 
shown in Fig. 4.11, for n = 1,2,3, ... , SO. .. 
2.2 Laplace Distributed Net Inputs. The Laplace 
distribution is also called the double exponential 
distribution, or the first law of errors. Its density 
function is: 

,''f 
tr -- lx-ul 
2o e 0 

where E[X] " u, Var (X] = o
2 

and lx-u l denotes the 
absolute value of (x-u). 

4 .0 5.0 6.0 7.0 y 

5.0 y 

Fig . 4.1. Distribution of R for independent normal net inputs (n=2 and n=3) . 
n 
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fR (y) 
6 

0.50 

0 .25 

Fig. 4 . 2. Distribution of Rn for independent normal net i nputs (n=4 and n=S) . 

6 .0 7.0 y 

Fig. 4.3 . Distribution of Rn for independent normal net inputs (n=6 and n=7) . 
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fR (y) 
8 

0.50 

1.00 

-· 

7.0 y 

Fig. 4.4. Distribution of Rn for independent normal net inputs. 

3.5 y/.,fii 

Fig. 4.5. Distribution of R ;In for independent normal net inputs (n=2,8,50,=). 
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0 . 10 

Fig . 4.6 . 

Fig. 4. 7. 

- 1.0 0 1.0 
R0- E(R0 ) 

../VAR(R0 ) 

2.0 3.0 4.0 5.0 

Distribution of [R -E(R )]/lvar(R ) for independent normal net inputs (n=2 and n=~). 
n n n 

Distribution of [R - E(R ) ] /lvar(R) f or independent normal net inputs (n=3 and n=oo) . 
n n n 
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-2.0 -1.0 0 1.0 2 .0 3.0 4.0 5.0 
Rn-E<Rn) 

.j VAR(Rn) 

Fig. 4.8. Distribution of (R -E(R ) ]/lr-va--r~(R~) for independent normal net inputs (n~4 and n~~). 
n n n 

- 2.0 -1.0 0 1.0 
Rn-E(Rn) 

.JVAR(Rn) 

Fig. 4.9. Distribution of [Rn·E(Rn) ]/1,-va--r~(R=-n~) for independent normal net inputs (n~s and n=~). 
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0 1.0 2.0 3.0 4 .0 5.0 

Rn-E(Rnl 

JVAR(Rnl 

Fig. 4 .10. Distri bution of (R -E(R ))/frv-ar~(~R~) for independent normal net i nputs (n=6 and n=~) . 
n n n 

7.0 

6 .0 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5 

Fig. 4.11. Variance of the range of the partial sums of independent normal 
variates as compared to the asymptotic result var(Rn)~0 . 226 n . 
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For the standard Laplace distribution, p 0 and 
a ~ 1, and thus, 

For n = 1, the distribution of the range of partial 
sums of Laplace distributed random variables is, of 
course, the distribution of the absolute value of the 
net input (see Eq. (4.25) for normal net inputs), 

(y>O) ( 4. 28) 

and thus .. 
-12y 12 E(R1) • 12 I Y e =-

0 2 

2 j2-l2y E(R
1
) ,. 12 Y e .. 1. 

0 

For n = 2, using Eq . (4.26), 

P(R2 • k) = 4pk 
Po 

( 2 + pl + .•• + pk-1 + 
pk 
2) 

PoPk PkPo 
T 

2 (-2- + plpk-1 + 0 0 0 + pk- 1 P1 + -2-) 

where now pi • P(Xt • i) refers to some convenient 

discrete approximation to the double exponential dis­
tribution. Recall that Eq. (4. 26) was derived for 
s~etric inputs, and thus it is applicable here. A 
similar expression can be easily found for nonsymmet­
ric inputs. 

Changing variables as appropriate 1n Eq. (4.26) 
and imposing the conditions under which the discrete 
approximation tends to the actual continuous net in­
put, in the li.mit the result is: 

f (y) = 4 • 12 e-12 Y ( f I{ e-12 u du) 
R2 2 0 

+ 2 yf /2 
T 

0 

-12 u e 1:2 -/2 (y-u) du T e 

[12 + y] e-1:2 Y- 12 -212 y e 

and thus 

.. 

(4.29) 

-12 y 
... 

E (R2) 12 J I 2 -12 y d y e dy + y e Y 
0 

-12 J 
0 

0 

Y e-212 Y dy 

12 12 712 
T- 8 =-s-
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E(R~) 
... 

2 -12 y i 3 -12 y d 12 I y e dy + Y e Y 
0 0 
... 

2 -212 y d 12 I Y e Y 
0 

=l + 
2 1 1 19 

-8 " T 

Before continuing, it should be noticed that _ 
Eq. (4.9) is actually a second-order difference equa­
tion, which is the discrete analogue of a second deri­
vative: 

P(Rn k) • A(n) - 2A(n) + A(n) 
k+l k k-1 

Consequently, an obvious approach consists i n 

writing the continuous analogue of A~n) and differen­

tiating it twice to obtain fR (y). 
n 

The continuous analogue of Qk~ is 

y 
~(u1 ,y) " I f(u1-u

0
) du

0
, 

0 

where y is the analogue of k, after a convenient 
change of variables (see reasoning leading to Eq . 
(4.25)), and where f( . ) is the density function of 
the net input. 

Similarly, the continuous analogue of 

Following the same reasoning, the continuous analogue 
n 

of Qk-4 is 

(4. 30) 

which can also be written as 

f(u2-ul) f(ul-uO) duo du l ... dun-2 dun-1' 

( 4. 31) 

In view of Eq. (4.30), the continuous analogue 
T n 

of ~ Qk ~ is simply 

(4. 32) 

which can also be written as 

I .... 
I 
I 

I!• 

\: 
II 
I 

! ., 
I• 
I· 

~ ' 

v. t I, i 
1 •. 

., 
I ,. 
I I n i'. ,, 
~.'I 
I~ 
I , .. _, 
I .. 
il:,.· 



y yf yf 
yn(y) • f 

0 0 0 

y_f ' y_ f f(u -u 1) 
0 0 n n-

f(u2-u1) f(u1-u0) du0 du~ ... dun_2 dun_1 dun. 

(4 . 33) 

Now the first derivative of yn(y) with respect to 

y is the cumulative distribution function (c.d.f.) of 
the range and the second derivative of y (y) is its 
probability density function. n 

Furthermore, the analogue of Eq. (4.12) is: 

E(Rn) =lim [y- yn(y)], 
y.-

(4. 34) 

and the analogue of Eq. (4 .13) is 

E(R2) = 2 i {E(R) - [y- yn(y))} dy. (4 . 35) 
n 0 n 

The above results are general. In the sequel, 
they are applied to the particular case of Laplace 
distributed net inputs. 

For n = 1 and Laplacian net input s, Eq. (4.31) 
gives 

= 1 - !. e-12ul 1 -12 (y-u) 
2 -2e 1' 

E~uation (4.32) furnishes 

y 
12 l'l -li y yl(y) • f ~(ul,y) du

1 0 
= y - 2 + 2 e 

Using Eqs. (4 .34) and ( 4. 35), 

E(R1) c lim [12 - li e-li Y] li 
2 2 =-z 

y ..... 

and 

E(R~) m 2 j l'l · e- li Y dy = 1, as expected. 
0 2 

Finally, 

as in Eq. (4.28) , 

J!.. (1 - e-li Y] 
dy 

~2 -li y 
• 'fL e , 
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Similar ly, for n = 2 

yf 12
2
2 

0
-121 u2-u

1
1 1P{u2,y) ,. 

0 

and 

tQen 

t e- l:f(y-ul)] du
1 

1 1 -12 u2 [~ _ !. e -12 y + 12 u } -z-e 4 4 2 2 

y ' 712 
= I vcu2,yJ du2 • Y - --s-­

o 

+ [ 12 + ~] e -12 y - "! e- 212 Y 

712 1 ] - 12 y 
E (R

2
) = lim {- - [ 12 + 2 y e 

r-8 

+ '; e-212 y} = 7'; , 

E (R~) " 2 i [ 12 + t y) e -l2 y dy 
0 

- 2 j 1 e- 212 y dy " 1: • 
0 

and f inally, 

r: -li y r:: -212 y 
[ •2 + y] e - t2 e , 

asinEq. (4 .29 ) . 

Similarly , for n = 3, 

1 -flu 
~(u3,y) a 1 - 2 e 3 { [ 11 - .]_ e -1:2 Y - l'l -l'i.y 

8 16 8 Y 0 

1 -2/2y] 
+ 16 e 

+ (3~ - '; e -12 Y] u3 + :} u;} 
1 -12 (y-u ) - 2 e 3 

. {r.!!. - 7.. e -1:2 y -
8 16 

+ [312 _ 12 e-12 Y] 
4 8 

(y-u ) + - (y-u ) 1 2} 
3 4 3 

and 

1912 [4712 9 12 2 -12 y 
Y3 (y) = Y -~ + ~ • 8 Y + If Y 1 e 

(
1012 1 ] -212 y 12 -3/2 y 
n-+4y e • ne 



The:\ 

~" { 1912 
"' -<..~.IQ --

Y- 16 
-12 y e 

: 

1 1912 + [1012 -212 y 12 e -312 y} + 4 y] e - ·- · '"1'6'· 32 . 32 

E(R;) = 2 • j [4712 9 12 2 -12 y 
0 32 • sY•-srl e dy 

- 2 • j [1012 
0 32 

1 
+ 4 y] -212 y d 

0 y 

+ 2 • j 12 -312 y d 95 
0 

32 e Y = 24' 

and finally 

d2
Y 3 (y) • [1512 5 12 2 -12 y 

fR3 (y) • d / 16 + 4 Y + T Y ] e 

[3/2 . 2 ) -212 912 - 312 y 
-2-+ Y e +16e 

Similarly, for n = 4, 

1jl(u
4
,y) • 1 _ ! e-12 u4 {[93 _ 37 e-12 y _ r'£ y e-12 y 

2 64 64 4 

and 

1 2 -12 y 9 -212 y 12 -212 y 
- 16 Y e • 64 e • 16 Y e 

_..!... e-312 y] 
64 

+ [2912 12 -12 y 1 - 12 y 
32 - 4 e - 8 Y e 

. = y - 18712 + [6112 57 1012 y2 
y4(y) 128 32 + 32 y + 3"2 

+ 1 3] -12 y [1712 11 12 2] -2/iy 24 y " - 3'2"" + 16 Y + 8 Y e 

[312 3 -312 y li -412 y 
+ 3'2 • 32 y] e - 128 e 

33 

-·-----------------~ ~ 

then 

E (R ) = .!.£ /2 
4 128 

... 12 57 1012 2 
E(R2) = 2 I [&!..1. + 32 y + "32 y 

4 0 32 

+ ..!...lJ e-l'iy dy 
24 

_ 2 ... I £~ u 12 21 -2l2 y 

0 
~~ + 16 Y • 8 Y e dy 

2 "'I £312 .! 1 -312 r d + 32 + 32 Y e Y 
0 

2 1.. .fi. - 412 y - 8722 
128 e - 1536 • 

0 

and finally , 

.. 2 
d y4(y) - [712 21 3/2 2 dl - 8 + 16 y + - 8- y 

1 3 -12 y 
•rry J e 

Figures 4.12 and 4.13 show the density function of the 
range for Laplacian net inputs compared to the density 
function of the range for normal net inputs, for n = 
1,2,3, and 4. 

For general n and Laplacian net inputs, ~(un,y) 
can be wr itten as 

where the ai ' s are functions of y. 

Writing ~(un+1 ,y) as 

the recursive relation between ai ' s and a.'s is 
1 

t•: 
'I 

I• 

I 
' ' ,, 

' ' I 



n = I 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 y 

fR2 (y) 

1.00 

n =2 
~ 

0 .50 

Fig. 4.12. Distribution of R
1 

and R2 for independent Laplacian (L) and normal (N) net inputs. 

5.0 6.0 7.0 y 

5.0 6.0 7.0 y 

Fig. 4.13. Distribution of R
3 

and R4 for independent Laplacian (L) and normal (N) net inputs. 
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a* 1 1 21 1 -3! 1 (n-2)! 1 (n- 1)! __ 1_ 
0 

212 (212) 2 
(212) 3 

(212) 4 (212)n-l 
a 

(212)n 0 

1 2! 1 31 1 (n-2)1 1 (n-1) I 1 Cll 1 
•• 212 (212) 2 (212) 3 (2/2)n-2 (212)n-l 

al 

1 1 31 1 1 a2 0 ~I ~I 1 
12 2 212 ; 1(212)2 (212)n- 3 (212)n-2 a2 

=T 2! 2! 

(13 0 0 1 1 
3 212 

(14 0 0 0 1 
4 

0 0 0 0 

_(l 
n 0 0 0 0 

and 
12 -12 y n-1 i i! (i-r) 

Clo " ao + 1 - T e [ 1: a 1: __;::.:..._ ..... Y'----:-] 
izO i r •O (i-r) I (2/2) r+ 1 . 

(4 . 37) 
There is no recursive relation for y (y), which 

would be, of course more appealing. Conseijuently, one 
has to use the recursive relation for the functions 
a1•s and to get yn(y) in the fo llowing way: 

.. y + 

= y + 
n- 1 /2 i 

1: (a. e- Y 1: 

i=O 1 r •O 

n-1 il 
- r . ai. 

i=O (.fi) 1 +l 

i 
u du ] 

n n 

i ! i-r y 
] 

(i-r) I (/2)r+l 

(4. 38) 

Recalling that the ai's are functions of y, 

yn(y) can be rewritten as 

[ 2 n-2 -212 y 
+ b2·0+b2 ·ly+b2 · 2y + ... +b2·(n-2)y ]e 

3 n-3 -3/2 y 
+ [b3· o• b3·1y+b3· 2Y + ... +b3·tn-3)Y )e 

[ (n-1) 12 y -nfiy 
+. · . + b(n-l)·o•b cn-l) ·ly]e +bn·Oe 

35 

(n-2) I 1 ~I 1 

(212)n-4 (212)n-3 a3 
31 31 

(n-2) I 1 1!!.:.!11 1 
(212)n-5 (212)n-4 a4 

41 41 

1 1 
n-1 

212 
3n-l 

0 1 
n -

(4 .36) 

Consequently, ther are n(n+l)/2 parameters in 
the density fR(y). The second moment of the range 

n 
follows f rom Eq. (4.35) and (4.39) : 

• i•n 
2 f 1: 

0 i=l 

i=n . 

j-n- i 
1: 

j•O 

j •n-i 

_j -il2 y 
b1 . r e 

•J 

., 
= 2 l: l: 

(il2)j+l 
b . . 

i=l j =O 
1 • J. 

(4. 40) 

The fir st moment of the range is more easily 
seen from the following expressions: 

.fi c 12 
E(Rl) • 2 = "2 2cl <r> 

E(R2)- E(Rl) =¥Z1 =f12
•.fi 4C2 <-}>4 

E(R3) - E(R2) " ~~/2- i/2 • i~ • .fi 6C3 (~)6 

1l(R ) _ E(R ) = 187.fi _ 19/2 • ~12 • 12 8c4 (~) 8 
4 3 128 16 128 

or i n general, 

E(Rn) - E(Rn-1) • 12 c 2n n 
c.!.)2n 
2 (4.41) 

or equivalentl y, 

i=n 1 2i 
E(Rn) li 1: 2i ci <2> 

i =l 
(4. 42) 

,·, !· I !. 
j! 
jl 

i,'· 
j:l 

... 

I 
I 



This result could be derived from Spitzer 's Lemma 
(1956). 

It is interesting to note that applying 
Stirling's approximation to tne factorials involved in 
Eq. (4.41), one has 

which is an exact result for normal inputs (Anis and 
Lloyd, 1953) . 

Table 4.3 shows the values of E(R ) from Eq. 
2 n 

(4.42) and the values of E(Rn) from Eqs. (4.36), 

(4.37) , (4.38), (4.39) and (4.40), for several values 
of n. Figure 4.14 illustrates the convergence of 
the exact ~ensity of the range for Laplacian net in­
puts to the asymptotic density function. 

TABLE 4. 3 MOMENTS OF THE RANGE FOR LAPLACE DISTRIBUTED 
NET INPUTS 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
is 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

0.7071 
1. 2374 
1.6794 
2.0661 
2.4141 
2.7331 
3.0294 
3.3071 
3.5694 
3.8186 
4.0564 
4.2844 
4.5035 
4. 7149 
4.9192 
5.1171 
5.3092 
5.4960 
5.6778 
5.8551 
6.0282 
6.1973 
6.3628 
6.5248 
6.6836 
6.8393 
6 .9922 
7.1423 
7.2898 
7.4349 

1.0000 
2.3750 
3.9583 
5.6784 
7.4949 
9.3884 

11.3407 
13.3434 
15.3867 
17.4661 
19.5757 
21.7126 
23.8730 
26.0551 
28.2563 
30.4751 
32.7097 
34.9591 
37.2219 
39.4973 
41.7843 
44.0822 
46.3902 
48.7078 
51.0343 
53.3693 
55.7123 
58.0629 
60.4206 
62.7852 

0.5000 
0.8438 
1.1380 
1.4097 
1.6670 
1.9184 
2'.1636 
2 .4065 
2.6462 
2.8846 
3.1211 
3.3568 
3.5911 
3.8249 
4.0578 
4.2902 
4.5219 
4.7533 
4.9842 
5.2148 
5.4451 
5.6750 
5.9048 
6.1342 
6.3635 
6.5926 
6.8215 
7.0503 
7.2790 
7.5075 

2.3 Exponentially Distributed Net Inputs. The 
distribution of the range of partial sums of exponen­
tial random variables is studied here to illustrate the 
influence of departures from normality in general and 
of the coefficient of skewness in particular. The 
exponential distribution is chosen as a drastic exam­
ple of departure from normality. 

The distribution of the range for n ~ 2 was 
obtained analytically, and for the cases n = 8, 
n "' SO, the solution was numerical. In Fig . 4.15 
these distributions are compared to Feller's asymp­
totic result is different from the cases of normal 
and Laplace inputs, in the sense that the mode of the 
exact distributions is larger than the asymptotic mode. 
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In the particular case n = 2, the result is 

fR(y) 
-2 [2(ey- e-y) + y(eY+ e-y)] for ~y<l = e 

2 

fR(y) 
-2 (2-y) (eY-e -y) 2e-{l+y) for l<y'2 e + 

2 

fR(y) = e-y (2 -1 -2 -2 for 24ty .. e - 2e + ye ) 
2 

A final remark can be made, having to do with the 
fact that finite jumps , as the one that occurs in the 
case n = 2, exist also for higher values of n, and 
the numerical integration algorithm, being a discreti­
zation procedure, may not detect them. Of course, 
this does not invalidate the conclusions regarding 
convergence of the exact results to the asymptotic one 

2.4 Closing Remarks. In this section, theprobability 
density function of the range of partial sums of in­
dependent, identically distributed, continuous random 
variables was shown to be given by 

d2 [y y y 
f"R(y) .. -:2 I f f 

n dy 0 0 0 

or, in 

... f(u2-u1) f(u1-u0) 

... du 2 du 1 du] n- n- n 

short notation, 

Recall that f(·) is the density function of the 
input. 

An example of application of these results was 
given for the case of Laplace distributed net inputs. 
Although algebraically complicated, the solution is 
conceptually very simple and this writer certain ly 
disagrees with Feller' s assertion (1951) that "it is 
practically impossible to calculate the exact distri­
bution of the ranges even for n • 3 and simple forms 
of the underlying distribution (input)." 

In the case of normal net imputs, the solution 
was shown to be necessarily numerical and the range 
for binomial net inputs was used as an alternative al­
gorithm for numerical integration . 

Finally, the range for exponential net inputs was 
studied to investigate the influence of nonnormality 
in range analysis. 

In all cases, comparisons were made between exact 
and asymptotic density function. 

3. A Note on Existing Asymptotic Results 

In this section, the asymptotic distribution of 
mn is derived in a very simple manner, using the 

method of images. This result was first obtained by 
Erdos and Kac (1946) and it is presented here to il­
lustrate that, as often happens in science, it was 
known before the works of Hurst (1951) and Feller 
(1951) that the square- root law holds asymptotically 
for any independent summands with zero expectation 
and finite variance. Another objective of the 

t. 
l 



1.00 

3.5 y/.fil 

Fig. 4.14. Distribution of Rn/ln for independent Laplacian net inputs (n=2,8,~) . 

3.0 3.5 y/.fo 

Fig. 4.15. Distribution of Rn/ln for independent exponential net inputs (n;2,8,SO,~). 
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presentation of this result is to propose an 
approximation to the distribution of mn for small ~ 

when the inputs are normally distributed. 

The asymptotic distribution ·'of Rn, derived 

initially by Feller (1951) is also discussed and an 
alternative format is proposed. 

3.1 The Asymptotic Distribution of mn. The partial 

sums of any i ndependent sequence of r andom variables 
which have finite variance are asymptotically normal, 
and thus the asymptotic distribution of mn does not 

depend on the type of i nput. · The argument is made 
wi th reference to the simplest input, namely the sym­
metric randoa walk process, in the presence of one 
absorbing state. 

The probabi lity that the system moves from the 
i niti al s tate j to any state i = 1,2,3, ... without 
passing through (absorbing) state zero is obtained by 
summing Eq. (3.22) over all values of i = 1, 2,3, .... 

i=• n n 
.: [nC(n•i-j)(l/2) - nC(n•i+jl l/2) ], 
l-1 2 2 7 

and only finitely many nonzero terms exi st in this 
e:r:pression. 

But when the system moves from state j to state 
i = 1,2,3, . . . without passing through state zero, 
then lmnl<j . 

For large n, the normal approximation to the 
binomial distribution can be used: 

i=U) 

l: c(!!:!:!:i)( 1 I 2) n = 
i=l n n+2 

[ c( .)+ c( .)• n n+~-J. n n+~-J 
... ] (l /2)n lill t(j/lil) 

~C(n+~+j) + nc(n+~+j) + .. • ] (l/2)n- 1 - t (j//ii) 

and thus 

P [lm I < j] • 2<1> (j/ln) - 1 
n -

or changing variables j = xl:n 

m jf x 
P£1.-!!.j < x) " 2t (x) - 1 "' J 

lil - 0 

(4 . 43) 

1 2 
-- u e 2 du 

which is the Erdos and Kac (1946) result. (Recall 
that lmnl and IMn l have the same distribution). 

Consequently, 

E(j
11

nl) = j {1- [2t(x) - l)}dx = 2 j (1- t(x)] =A 
l:n 0 0 w 

or, equivalently, 

ECimnl> -ffrn::ts 0.7979 lil. 

38 

Recall that for input s having zero ~/!ctation, 

E (R ) = 2 ; E (M ) and thus E (R ) = ! /:n = 
n n n 11 

1.5958 In which is Feller' s (1951) result . For 
n = 1 and normal i nputs, it is clear that 

P[ira1 1 ~ >1 =t(y) = 1 -t (-y) . (4. 44) 

Rewriting Eq. (4.43), 

P[jmnl ~ y] = H(y/ Iii)- 1 • 1- H(-y/lil). 
l4. 45) 

Equati ons (4. 44) and (4.45) can be written as 

where g (l, y) • 1 and lim g (n,y) = 2. 
Jt+OO 

An approximation to the distribution of lm I 
n 

for normal inputs and small n follows when g (n, y) 
is considered a function of n only, neglecti ng the 
influence of y: 

P[jmn l ~ y] = Flm I (y) 
n 

1- g (n) t (-y/lil) . 
(4.46) 

Now a result due to Anis and Lloyd (1953) can be 
used, namely 

P( lra I < O] = 2nc (l/2) 2n n - n 

so that, from Eq. (4.46) , 

C (l/2) 2n = l - -2
1 g (n) 2n n 

or equivalently, 

where, obviously, g(l) • 1 

l.im g(n) 2 • 

n-+<» 

The expression 

P£1mnl ~y] = Flm l(y) 
n 

"n r = 1 - 2[1 - 2ncn (l/2)' ) t (-y/~n) 

(4 .47) 

can be used as an approximation to the exact distribu­
tion of rnn for the case of normal inputs . Figure 
4.16 shows the reasonable agreement between Eq. (4.47) 
and the Monte Carlo results presented by Yevjevich 
(1965). 

From Eq. (4.47) , 
"' 

E[lm ll = f [l - Fm(y) ] dy 
n 0 n .. 

2(1 - 2 c (l /2) 2n] J (1 - t (y/li\)] dy n n 
0 

2[1 C (1/2) 2nJ Iii . 
2n n r'2iT 



-Eq. 4.47 
• Data Generation Method 

0. 1 

13 14 15 16 17 18 'I 

Fig. 4.16. Approximate cumulative distributi on function of the 
minimum partial sum of independent normal variates. 

Using Stirling 's approximation: 

and thus 

E[ \m \] = !f. lil- f!.. lil :::= 0. 7979 lil - 0.4502 n Vii ..; -;lim 

and E(R) ~ 2 • E(lm \]" 1.5958 li\ - 0.9003 which 
n n 

is a better approximation than simply 1.5958 1:0. 

Notice that to get Eq. (4.47) from Eq. (4.46) , 
the determination of g(n) was arbitrary. One could 
very well determine g(n) by imposing another condi­
tion, such as 

n 1 
.. - 1-l: i - 2 

&ial 

which is t he Anis and Lloyd (1953) exact result. In 
this case , another approximation to the distribution 
of mn would fol low. Furthermore, this approximation 

would be as good as the one shown in Fig. 4.16. 

3.2 The Asymptotic Distribution of Rn. Feller's 

(1951) result follows immediately from Section IV.l.3, 
namely, the range analysis for the r andom walk process, 
when the normal approximation to the binomial distri­
bution is used . Note that this is not an alternative 
derivation of the asymptotic density function. It is 
essentially t he same derivation. 
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The results found by this wr iter ar e 

j•• 
fR /li\ (x) " 2 l: j (-l)j{(j -1) + [(j-1) x:] 

n j:l 

- 2j + (j x) + (j+ l) + [(j+l)x]} (4. 48) 

for the probabil ity density function, and 

j o:ao . 
FR !In (x) = 2 l: j (-l)J { t [ (j-1) x] 

n j =l 

- 2 t (jx) + t [(j+l) x] } (4.49) 

for the cumulat ive distribution function, ' where 

1 - .!.v2 
+ (v) "'- e 2 

& 

and u 
t (u) • I Hv) dv. 

Note that 

fR //; (0) • 0, 
n 

FR //; (0) "' 0, 
n 

and 
FR //; (ao) .. 1, 

n 

as they should. 

·,' 
.,. 

' 1: . 



It can be easily shown that Eq. (4.48) can be 
simplified to 

(4. SO) 

which is the original Feller (1951) result. It is not 
obvious from Eq. (4,50) that fR /Iii (0) = 0. Further­

n 
more, it is not obvious that this function is non­
negative. 

The main advantage of Eq. (4.48) over Eq. (4.50) 
is that the mean can be obtained by termwise integra­
tion. In his paper, Feller found the mean by analogy 
with an existing result in the Kolmogorov- Smirnov 
theorem on empirical distribution functions. Using 
Eq. (4.48) this analogy is no longer necessary, and 
the mean is obtained by straight forwa~d integration 
as follows. 

E[R /Iii] n 

j =• 
2 l: j (-l)j f {j-1) x + [(j-1) x] dx 

j • 2 0 

j•• 
- 4 l: 

j • l 
(-l)j j j x + (jx) dx 

0 

j•• .. 
+ 2 l: j (-l)j J (j+l) x + [(j+l)x] dx. 

j=l 0 

.. 
Recalling that J kx + (kx) dx = t J v + (v) dv 
- 1- one has 0 0 

4 _1_ 

l2i 
2-1- +2-1-

2/'iW 12. 

• - 1- [3 + 4 ~ l:.!.l!..] 
liW j=2 j 2-l 

= _!_ = 1.5958 .•.. 
& 

A final remark can be made, having to do with the 
fact that the asymptotic moments follow very easily 
fro~ the moments of the range of the random walk pro­
cess. For instance, using Stirling's approximation in 
l!q. (4.22), 

E(Rn+l) - E(Rn) " ~ • ~ 

and consequently, 

E(R ) =s If' (1 n+l J-; 
1 

+- + 
12 

~.If uTi llfl. s9s8 rn 
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or equivalently, E(Rn/lii) = 1.5958 ..•. 

Similarly, using the normal approximation to the 
binomial distribution in Eq. (4 . 23), the asymptotic 
second moment of the range can be obtained. 

The second term in the right hand side of Eq. 
(4.23) can be written as 

j=+• } 
-.1: [vn(2j(k+l) + 1, 1) - vn(2j(k+l) + 1, 2)] 
J=-· 

(j#O) 

and it can be approximated by 

2 l: l: - + [ (2j -1) 
k=K-1 { j·- 2 (k+ 1} /n] 

k• l j•-· rn 
j•+• 

~. [2j(k+l)/ln]} ~ 
.. - l: 

j=-- rn 
(j#O) 

k=K-1 
(-l)i+l .!; [i(k+l) ] 

" 2 l: E 
k•l i"l rn rn 
i • • i+l 

=s 8 l: ( -.1) f + (v) dv 
i=l ~ 2illn 

1 _!.v 2 
where + (v) = -e 2 

& 
and· thus 

!ill (E (R
2 

' ] - E (R
2
. )] = l.im { /f l n+r n J'Wrn . 

n- JT'MO n 

+81:-.- [l - t(_2_)] 
i•• (-l)i+l 2' } 

1 .. 1 ~ rn 
1,. .. r_ni+l 

4 l: ~ 4 tn 2 
i=l ~ 

and finally var [R I Iii] • 4 tn 2 
n 

8 - -. 
1f 

o. 2261. ... 

3.3 Closing Remarks. In this section, an 
approximation to the distribution of the minimum (or 
maximum) of partial sums of a finite number of inde­
pendent normal variates was proposed (Eq. (4.47) and 
Fig. 4.20). 

An alternative format for the asylllptotic density 
function of the range was also proposed (Eq . (4.48)), 
and the asymptotic moments of the range were shown to 
follow easily from the concepts outlined in Section 
IV.l.3. 

4. Summary 

The main items investigated in this chapter are 
s ummarized as: 

i) General approach to the distribution of the 
range for independent discrete inputs (Eq. (4.9)) and 
is first two moments (Eq. (4.12) and (4.13)). 



ii) GeneraL approach to the distribution of the 
range for independent continuous inputs (Eq. (4. 33)) 
and i ts first two moments (Eq . (4 . 34) and (4.35)). 

iii) Illustration of ~he convergence of exact 
dis tri butions to the asymptotic distribution, 
emphasizing that for moderately large values of n 

41 

the first exact two moments are the only information 
needed in practice. 

Several examples were given to illustrate the 
concepts outlined and a section of comments on exist i ng 
asymptotic results was included . 



Chapter V 

DEFICIT ANALYSIS FOR INDEPENDENT, IDENTICALLY DISTRIBUTED INPUTS 

As stated previously, range analysis may be 
relevant to the design of storage capacities when the 
regulation of flows is complete (alternative· expres­
sions are "full regulation" and "regulation on the 
mean"). This implies that the net input (input minus 
output) has zero expectation. 

When the mean net input is pos1t1ve (i .e., the 
regulated mean discharge is smaller than the mean nat­
ural discharge), overflows are unavoidable, and are 
implied in the design. Negative mean net i nputs do 
not need to be studied because it is impossible to 
regulate a discharge larger than the mean natural dis­
charge for long per iods of time. Nevertheless, the 
approach described i n this chapter can be applied for 
both positive and negative mean net inputs. 

The study of storage problems involving partial 
regulation (i.e . , cases when the mean net input is 
positive) will be called the maximum accumulated defi­
cit analysis, or simply deficit analysis. One may ar­
gue that deficit analysis as described in this chapter 
should be applied even in the case of full regulation 
of discharges, and that the criterion of "designing 
for the range" may thus be questioned. 

The procedure used in the design of storage 
capacities, say 30 years ago, consisted in the appli­
cation of Rippl's mass curve to the observed hydro­
logic sequence (Hurst, 1951), as shown in Fig. 5 .1 
(this procedure has been sometimes referred to as the 
"sequent-peak method"). 

In Fig. 5.1, the cumulative sum of departures 
from an arbitrary {and convenient) base value 8 is 
plotted. To study the cumulative sum of departures 

from other base values (say , 8
1
), the summation curve 

is referred to inclined axes (say, 08
1
). It is obvi­

ous that as this inclination changes, di fferent points 
on the summation curve may become maxima, or minima. 
For instance, AA

1 
is the range and A1A2 the maxi-

mum accumulated deficit with respect to the base value 
8, cc

1 
is the maximum accumulated deficit with re-

spect to the base B
1 

and c2c1 
is the maximum accu­

mulated deficit with respect to the base 82. Clearly 

the concept of range is meaningless for small base 
values. 

The maximum accumulated deficit with respect to 
whatever discharge is to be regulated (base value) 
woul d be considered the storage capacity required. 
Often times this procedure would be used to find what 
would4be the regulated discharge, given the storage 
capacity. The conventional way to answer this ques­
tion would be to consider several base values, to plot 
the relation between storage capacity and regulated 
discharge and to fit a smooth curve, usually called 
the "storage-yield relationship." Clearly, the only 
purpose of considering inclined axes such as 081 and 

082 in Fig. 5.1 is to avoid drawing a new graphic for 

each base value. 

The modern procedure is not very different: it 
is essentially the application of the same old proce­
dure, in the framework of the Monte Carlo method. In 
other words, sequences statistically indistinguishabl€ 
from the actual record are generated, the old proce­
dure is applied to each realization, and the 

Fig. 5. 1. Example of application of a Rippl ' s mass curve. 
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distribution of the maximum accumulated deficit is 
approached from a relative-frequency standpoint. Usu­
ally the sample mean value is taken as the storage re­
quired (Fiering, 1965). _. 

Surprisingly, virtually no theoretical work has 
been done on this topic. The main reason seems to be 
that figures such as Fig. 5 . 1 are misleading, in the 
sense that the engineer may reach the conclusion that 
no simple connection exists between the storages re­
quired to guarantee different discharges. 

The objective of this chapter is to study the 
properties of the maximum accumulated deficit. As in 
Chapter IV, the case of discrete inputs will be 
treated first. In the sequel , asymptotic results will 
be derived and the case of continuous inputs will be 
considered. 

1. Discrete Net Inputs 

Initially, some concepts related to the theory of 
~tarkov chains will be outlined, the rel evance of which 
will become apparent later. 

Consider the sequence of independent, identically 
distributed discrete random variables Xt (t=l,2, ... ,n) 

such that P[Xt=i) =Pi. Using a terminology similar 

to Moran's analysis of the finite reservoir, let Xt 

denote the net input at discrete time t into a res­
ervoir of size k+l. Furthermore , let this reservoir 
be such that when empty, it continues empty with prob- · 
ability one, and when full, it continues full only if 
the net input in the next discrete time is nonnegative. 
Then the amount of water stored follows a simple homo­
geneous Markov chain with state space {0,1,2, .. ·. ,k+l} 
and one- step transition matrix P' as shown here 

0 2 3 k-2 k-1 k k+1 

0 J._, J._2 J._3 J.- lt+2 t-k•1 1_k 1-k-1 

0 Po P_l P_z p-k•3 p- k+2 p-k+l P_k 

2 0 p+l Po P_l p-k+4 p-k•3 p-k•2 p-k•l 

3 0 P.z p+1 Po p-k•S p-k•4 p-k+3 p-k+2 

k-2 0 p•k-3 p+k-4 p+k-S Po P_l P_z P_3 

k-1 0 p•k-2 p•k-3 p•k-4 p•l Po P_J P_z 

k 0 p+k-1 p•k-2 p•k-3 P.z p•1 Po P_l 

k+l 0 u•k u+k-1 u•k-2 u+3 u+2 u., uo 

(5 .1) 

where 

u. pj + pj+l + pj+2 • ... (j & 0,1,2, ... k) 
J 

and 

R. -j = p 
-j 

+ p 
-j-1 

+ p -j-2 • ... (j = 1,2,3, . .. k•l). 

Clearly the matrix P' can be partitioned as 

pr = G' 
k•2 I ~ c·l (5.2) 
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where ~+l is a column vector of size (k+l), with 
all elements equal to zero; the symbol T stands for 
transpose, and the subindexes denote the size of the 
vector or matrix. Furthermore, 

The n-step transition matrix is then 

P'~+2 · [ : 
-k+l 

(5. 3) 

The matrix will be called the n-step 

"restr icted" transition matrix, for obvious reasons. 
Notice that this matrix is different froll! the "re­
stricted" transition matrix used in Chapter IV. 

1. 1 Formulation of the Problem. Given the sequence 
of independent, identically distributed discrete ran­
dom variables 

Xt; t = 1,2, ... ,n 

consider the partial sums 

and 

and in particular the partial sums which are local 
maxima, that is, 

{st. st. ~ max(St.-1' st.+l); 
1 1 1 1 

i 1,2, ... , J; ti < tk fori< k}, 

where J is the number of local maxima among 
{St; t Q O,l, ... ,n-1}. 

For each local maxima S consider the partial 
ti 

sums immediately following it that aFe equal to or 
smaller than St . Let u. be the largest integer 
such that i 1 

Let s : min S + v 
ti 1 < v < u. ti 

- 1 

and define the deficit d 
ti 

by 

dt s s . i = 1,2, ... ,J. t. t.' 
i 1 1 

The maximum accumulat ed deficit On can be defined by 

.v 

D n 
d 
t. 

1 

Notice that some of the sets {St. +v: S < S · t.+v t.' 
1 1 1 

1, 2, ... ,u
1

} may be subsets of a large one and 

.I 



thus the corresponding deficit need not be considered, 
because it could not be the maximum deficit. 

1.2 Distribution of the Maximum Deficit 0 . The 
. n 

(s,u) entry in the matrix P~+l ' represented by 

p~~~(s,u), denotes the probability of a transition 

from state u • 1,2, ... ,k+l to state s • 1,2, ... ,k+l 
without passing through state zero. 

S'"k+l 
Then E p~~~ (s,k+l) denotes the probability 

s=l 
that the system does not reach state zero in the first 
n steps, given the initial state u = k+l. But this 
is simply P[Dn ~ k) and Fig. 5.2 illustrates this 

fact. A realization of the process {\; t = 1,~, ... , n} 

is shown in the upper part of the graphic and the same 
process, as routed through a hypothetical, initially 
full reservoir of size k+l, is shown in the lower 
part. Clearly the filtered process preserves only the 
deficits d and the distribution of the maximum 

t. 
1 

deficit follows immediately. 

···l.___w_~ ___ q_ 
Fig. 5.2. Sample realization of the process 

{St; t • l,2, ... } (upper part) and corres-

ponding transformation which preserves the 
deficit periods (lower part). 

Now, from 

s=k+l 
E 

s=l 

(n) 
pk+l (s,k+l), (5.4) 

it follows that 

s • k+l (n) 
s•k (n) 

P[Dn =-k] = E pk+l (s,k+l) ~ E pk (s ,k). 
s• 1 s=1 

(5.5) 

Equation (5.4), in matrix notation, becomes 

[ k) IT Pn 8 
P 0n ~ = ~+1 k+1 ~+1 (5. 6) 
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where T stands for transpose, the subindex k+l 
denotes the size of the vectors and matrix involved, 
n 

pk+l is given by Eq. (5.3) and 

T 
~+1 % [1 l ... 1 1), 

and 

T 
~+1 . [0 0 ... 0 1). 

Similarly, Eq. (5.5) can be written as 

T n T n 
P[On " k] = ~+1 l'k+1 ~+1- 4 pk ~- (5· 7 ) 

For practical applications, it may be convenient 
to denote the level of regulation a by 

a • 
E(Xt) 

[1 - E(Yt)) • 100\ (5.8) 

where EtXt) is the mean net input and E(Yt) is the 

mean natural discharge (gross input). Clearly, for 
E(Xt) c 0, a • 100%. 

For the particular case of constant output 
(constant regulated discharge), Xt and Yt have the 

same variance o2 and their mean values can be 
written as 

where c is the inverse of the coefficient of varia­
tion Cv and ~ is a number between zero and c. In 
this case, Eq. (5. 8) simplifies to 

or 

a • [1 - ~] · 100\ c 

a = [1 - ~CyJ • 100%. (5.9) 

An example will now be given to help clarify the 
concepts exposited. 

Example 5.1 

The distribution of the maximum accumulated 
deficit will be found, in the case n = 3, for the 
following binomially distributed net inputs: 

I) P(Xt = i) = 4C2+i (1/2) 4 (i ='- 2,-1,0,1 , 2) 

(notice that E(Xt) = 0 and var(\) = 1) 

II) P(X~ "' i) = 4c l+i (1/2) 4 (i .. -1,0, +1,+2,+3) 

(notice that E (Xt) = 1 and var(X~) = 1) 

For the first net input, to find, say, P(D3 ~ 2) , 
Eq. (5.6) can be used: 



P(D3 ~ 2) • (1/16) 3 • [1 1 I) 

~ 
4 .. 

:]'[: J 6 3715 
= 4096' 

5 

Similarly, 

2863 P(D3 ~ 1) (1/16) 3 • [11) • ~ :J [:] = 4096 

and 

3 1331 
(11/16) " 4ii96' 

Consequently, 

P(D3 2) • P(0
3 
~ 2) - P(03 ~ 1) = 852/4096 

P(D3 = 1) • P(D3 ~ 1) - P(03 = 0) = 1532/4096. 

For other values of k in Eq. (5 . 7), the results are 
summarized in the following tabulation 

k 0 1 2 3 4 5 6 

P(03 • k) 
1331 1532 852 292 76 12 1 
4096 4096 4096 4096 4096 4096 4096 

Notice that E (03) = 1. 0942 Compa.re this 

result with E(R3) = 1. 7480 . .. , from Example 4.2. 

For the second net input, one has 

4061 
= 4096 

P(03 ~ 0) = P(D3 

and consequently: 

3 3375 
0) = (15/16) = 4096 

3375 686 
P(D3=0) = 4096' P(D3=l) = 4096' P(03=2) 

34 1 
'" 4096 and P(D3"3) = 4096 · 

755 Finally, E(03) , = 4096 = 0.1843 

An interesting feature is that the analysis of 
net inputs can be used for several different gross in­
puts (natural d~scharge) . In other words, the result 
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E(D3) • 0.1843 . .. found above holds for any value of 

E(Yt) . If E(Yt) is , say 4, Eq. (5.8) gives a= 75%. 

If E(\) is, say, 8, Eq. (5.8) gives <1 .• 87.5%. 

This il lustrates the obvious fact that less variable 
natural discharges require smaller storage capacities 
for a given level of r egulation. 

It is also interesting to notice that the output 
(regulated discharge or water demand) can be random. 
This simply i ncreases the variance of the net input 
(and consequently increases the storage capacity re­
quired), but ~he procedure is not altered. 

A final remark can be made, having to do with the 
fact that a reasonable coefficient of variation for 
annual flows of American r ivers is 0. 25. In this case, 
considering the output constant, the level of regula­
tion correspondent to E(D

3
) = 0.1843 . . . would be 75% 

(Eq. (5.9) for ~ • 1.0 and Cv • 0.25). Notice the 

drastic reduction in E(03) as compared with the case 

'of full regulation, in which E(03) = 1.0942. 

1.3 An Alternative Expression for the Distribution of 
Qn· Another way of approaching the problem, 

which will be advantageous lat er to derive the ana­
logue result for continuous inputs, is to partition 
Pk+2 as fo llows: 

.•. , . [ ~ ~ ::·-] 
(5.10) 

T 
where pk • (p_k p-k+l ... p_ 2 p_1], and all other 

terms are obvious from Eq. (5.1). Notice that· now the 
matrix Qk' used in Chapter IV, appears explicitly. 

Taking into account Eq. (5.3) and (5.6) and 
recalling that the sum of elements of each column of 

the matrix P k~Z is unity, if fo1101ts that the ele­

ment in the first row and last column of P'n is 
1 - P(D < k) = P(D > k). k+2 

n- n 

It is convenient to work only with the first row 

of Pk~2 , keeping in mind that only the last element 

in this row is of interest. Let this first row be 
written as 

where ~n) is a vector of size k, T stands for 

transpose, d~n) is a number (equal to P(Dn > k)) and 

the preservation of the scalar 1 is apparent from 
Eq. (5.3). 

Clearly, for n = 1: 

(5 . 11) 

and 

(5. 12) 



and in general , the following :recursive relationship 
is obvious: 

T d(•-ll' .( •. ;;] [ : 
~ '-k·l] (1 aCn) · d(n)J [1 Qk pk k 0 k 0 -4< 

0 
T 
~ uo 

or equivalently, 

(5.13) 
T 

d (n) = .t + aCn-1) P + dCn-1) o -k-1 k k o uo. 

Equations (5.13) will be useful later i n this chapter. 

1.4 Closing Remarks. In this section, a general 
approach was described to obtain the distribution of 
the maximum deficit of partial sums of independent, 
identically distributed discrete random variables. In 
a later chapter this approach will be extended to de­
pendent random variables. 

It is apparent that the solution to the problem 
is simpler than its formulation. 

An exampl e was given to i llustrate , among other 
things, the drastic reduction in storage capacity r~­
quired in the case of partial regulation, as compared 
to the case of full regulation. 

A final remark can be made, having to do with the 
obvious relationship between deficit analysis and 
Moran's analysis of the finite reservoir: the proba­
bility that a reservoir ~size (k+l), initially full, 
is empty for the first time at discrete time n, re­
gardless of the occurrence of overflows is simpl y 

P(Dn > k] - P(Dn-l > k]. 

Consequently, results like Weesakul's probability 
of first emptiness with or without overflows for the 
case of geometric inputs (1961) can be used directly 
to obtain the distribution of D for geometric 
inputs. n 

2. Asymptotic Results 

The maximum accumulated deficit is a function of 
the partial sums St (recall definition in Section V 

1.1). These partial sums are asymptotically normally 
dbltributcd for all independent inputs which have 
finite variance , and consequently, the asymptotic dis­
tribut ion of the maximum deficit is independent of the 
unJorlying random variable (input). 

In this section, the asymptotic result will be 
tlorivoJ based on the deficit analysis for the random 
wulk process. 

2.1 Maximum Accumulated Deficit for the Case of Full 
Regulation. Consider the following probability 

dlstrl bution for the input: 

p(Xt = i) .. l/2 (i"' -1 , +1). 
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In this case, the one-s tep "restricted" 
transition matrix pk+l is 

0 1/2 0 0 0 0 

1/2 0 1/2 0 0 0 

0 l/2 0 0 0 0 

0 0 0 0 1/2 0 

0 0 0 1/2 0 1/2 

0 0 0 0 1/2 1/2 

and its n·th power can be found using the method of 
imag~. 

It follows from Section III 2.3 that the (s,u) 
n entry in the matrix Pk+l is given by Eq. (3.25): 

p~~i (s,u) 
j=+co • 

l: (-l)J {vn (2j (k+3/2) + u,s] 
j =-co 

- vn (2j(k+3/2) - u,sl} 

where s • 1,2, ... ,.k+l; u = 1,2, ... ,k+l, and where 
vn(r,t) is given by 

Now Eq. (5.4) can be used as 

s=k+l 
P(Dn ~ k) = l: p(n) (s,k+l) 

s=l k+l 

s=k+l j,.+.. . 
l: l: (-1)J 

s=1 j=-"' 

• {vn(j (2k+3) + (k+l), s] - vn[j(2k+3) - (k+l), sJ} 

For simplicity, rewrite Eq. (5.14) as (5 .14) 

where 

vl 

s=k+1 s=k+1 
l: vn[(k+1), s] -

s=l 
l: vn[-(k+l),s] 

s=l 

j /2=o+a> S"k+1 
l: l: vn[j(2k+3) + (k+l), s] 

j/2=+1 s=l 

j/2=-oo s=k+l 
l: l: v

0
[j(2k+3) - (k+l),s] 

j/2=-1 s=l 

j/2=+<» { S"k+l 
E l: vn[j(2k+3) + (k+l),s] 

j/2=+1 s=l 



and 

s=k+1 } 
E vn[-j(2k+3) - {k+l),s] 

s=1 

j/2•-"' s=k+l 
v = l: 2 .

1 
l: vn[j(2k+3) + (k+l) ,s] 

J 2"-1 s•1 

j/2=+<» 
E 

j/2=+1 

sak+1 
E v (j(2k+3) - (k+l),s] 

s=1 n 

j/2=+ .. { S"'k+ 1 

j/2!+1 s!l vn(-j(2k+3) + (k+1), s] 

s=k+1 } 
- l: vn(j(2k+3) - (k+l),s] 

s=l 

v = 3 

(j+1)/2=+ ... 
E 

(j+1)/2=+1 

(j-1)/2=-"' 
E 

(j-1)/2=-1 

s=k+1 
E v (j(2k+3) - (k+1),s] 

s•1 n 

s•k+1 
l: vn[j(2k+3) + (k+1), s] 

s=1 

(j+1)/2=+<» {s=k+l 
E l: v (j (2k+3) - (k+1), s] 

(j+l)/2=+1 s=l n 

s=k+l } 
- 1: v (-j(2k+3) + (k+l),s] 

s=l n 

v = 4 

(j-1)/2=-"' 
l: . 

(j-1)/2•-1 

(j+1)/2=+ ... 
l: 

(j+1)/2 .. +1 

s=k+1 
E v [j(2k+3) - (k+l),s] 

s•l n 

s•k+1 
l: v [j (2k+3) + (k+l) ,s] 

s=1 n 

(j+1)/2•+ ... { s•k+1 
l: E vn[- j(2k+3)-(k+l) ,s] 

(j+1)/2=+1 s=l 

s=k+l } 
- E vn(j(2k+3) + (k+l),s] . 

s=1 

In particular, the terms in v0 are 

s=k+1 
l: v [(k+1) ,s] = [ C + C 

5 .. 1 n n ~ n (n+k-l) 

s=k+1 
l: v [- (k+l),s] 

s=1 n 

2 2 

(nC{n- k-2) + nc(n- k-3) 

+ • • • 

2 2 

n 
+ nc(n-2k- 2)] • ( 1/ 2) · 

2 
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For large n, the noxma1 approximation to the 
binomial distribution can be used as 

s=k+1 
l: v [(k+l ),s] : ~(k/lil) - 1/2 

s=l n 

and 

s=k+1 
1: v r- Ck• 1 2 , s 1 • ~ c-k/ rn-, _ ~ c-2k/ rn2 

s=l n 

.. ~ C2k/ rn2 - ~ Ckt lil) 

and thus 

vo :: 2 ~ (k/lii) -<I> (2k/lil) - 1/2. (5 .15) 

Similarly, one has 

j/2=+ .. { 
v 1 = . 1: ~ [(j(2k+3) + k)/lill - <1> (j(2k+3)/lil J 

)/2=+1 · 

- ~ [(-j(2k+3) - k)/li\] d [(-j(2k+3) - 2k)/li\]} 

or 
j/2=+"' { 

V1 " E H ((j(2k+3) + k)/lil] 
j/2=+1 

- <I> [(j(2k+3) + 2k)/li\] -<I> (j(2k+3)/lil]}. 

(5 .16) 

j/2z+oo { 
v2 = 1: <1> [(-j (2k+3) + k)/lil] - <1> [-j(2k+3)//ii) 

j/2=+1 

or 

or 

- ~ [ (j(2k+3) - k) /li\1+ <I> [ (j(2k+3) - 2k) !Iii)} 

j/2=+ ... { 
v

2 
= r - 2 ~ [ (j(2k+3) - k)/lil] 

j/2=+1 

+<I> ((j(2k+3) - 2k)/lil]+<l> [j(2k+3)//ii)} (5.17) 

v3 - E t ((j(2k+3) - k)/lil} 
- (j+1)/2• +"'{ 

(j+l)/2•+1 

-<I> [ (j(2k+3) - 2k)/lil] 

- <I> [ ( - j(2k+3) +k)/li\]+ <I> [ -j(2k+3)//ii)} 

(j + 1) /2=+oo { 
v

3 
= l: 2 ~ ((j (2k+3) - k)/lil} 

(j+1) /2=+1 

- ¢[(j(2k+3) - 2k )/li\] - <I> [j(2k+3)/lri}}, 

(5 .18) 

(j+1}/2=+"'f 
v

4 
= 1: <1> [(-j(2k+3) - k)/lil] - <~> [(-j(2k+3) 

(j+1)/2=+1 

- 2k )/lri)- <l>((j(2k+3) + k)/lil] ·~ (j(2k+3)/li\)} 



or 
(j+l)/2=+0. { 

V
4

: l: -2~[(j(2k+3)+k)//il] 
(j+1)/2=+1 .. 

+ ~ ((j(2k+3) + 2k)/lii] q [j(2k+3)/lil]}. 

and fina lly tte asymptotic cumulative distribution 
function of the maximum deficit is 

j/2=+"' { 
+ l: 2 ~ [ (j(2k+3) +k)/li\] - H [ (j {2k+3) -k)/lii] 

j/2=+1 

+ ~[(j(2k+3) -2k)/li\) -~[{j{2k+3) +2k)/lii)} 

(j+l)/2=+co { 
+ l: 2$ f(j(2k+3) -k)/lil]-2~[(j(2k+3)+k)//i1] 

(j+l)/2=+1 

+ ~ [(j(2k+3) +2k)/lii] -~[(j(2k+3) -2k)/lii]} 

= 2 ~ (k/ in) - ~ (2k/ lri) - 1/2 

+ j=t (-l)j {2~[(j(2k+3) +k)/li\)- 2~((j2k+3)-k)/lil] 
j=l 

+ t[(j(2k+3) -2k)/lil] -~[(j(2k+3) + 2k)/lil)} 

= 2 ~ (k/ Iii) - ~ (2k/ Iii') - 1/2 

j=+co 
+ l: (-l)j {H [(2j+l)k/,fr\] - 2t[(2j-1)k/li\) 

j=l 

+ ~ [(2j-2)k/li\) -t[ (2j+2)k/,lii')} 

.., 4(t(k/lil) -~(3k/,fr\) + t(5k/lii) -~(7k/,fr\) + ••• ] -1 

or 

(j + 1) / 2=+00 i:.!. 
F0 /Iii (x) = 4 l: (-1) 2 ~ (jx) -1. (5.19) 

n (j+1)/2=1 

Consequently, the asymptotic density function of the 
maximum deficit is 

(j+1)/2=+ao i:.!. 
f01rnCx)=4 r (-1)

2 jc!l(j,.;J,(5.20) 
n (j+l)/2=+1 

The moments are easily obtained by termwise 
integration: 

E(O /,fr\) n 

(j+l)/2=+oo 
4 l: 

(j+1)/2=+1 

j-1 
(-1)_2_ j 

0 

4 
{j+l)/2=+oo 

=- l: 

i:.!. 
( -1) 2 

j I2Ti (j+l)/2=+1 

jx cjl (jx) dx 
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= -4
- (1- 1/3 + 1/5- 1/7 + ... ) ~ - 4- . -4~ 

I2Ti ,12; 

or, equival ently for inputs with variance 2 
0 ; 

E(O ) • fi_ · Iii • o ~ 1.2533 ,fr\ • o (5.21) n /2 
. -1 

(j+1)/2m+co ~ ao 
E(0

2
/n) = 4 l: (-1) 

2 J j it (jx) dx 
n (j+1)/2=+1 0 

(j+1)/2=+oo 
= 2 l: 

(j+1)/2=+1 

i.:!. 
( - 1) 2 

.2 
J 

= 2 (1 - 1/9 + 1/25- 1/49 + .• . ) = 1.8319 

2 or, equivalently, for inputs wi th variance o : 

(5.22) 

and consequently 

var(On) = (1. 8319 -· f> · n • o
2 

= 0. 2611 • n • cr
2 

(5.23) 

and 

c.. (0 ) = 10. 2611 = 0. 4077 
-v n .fi72 

where CV stands for the coefficient of variation. 

It is interesting to notice that the asymptotic 
mean maximum accumulated deficit for the case of full 
regul ation is equal to the asymptotic mean adjusted 
range (Feller 1951). 

Feller' s results are compared with the results of 
this section in the following tabulation: 

R ;rn 
n R*/,fr\ 

n 0 /li1 
n 

E (.) 1. 5958 .... 1.2533 ... 1. 2533 .•. 

Var ( •) 0.2261 ... 0.0741. .. 0.2611 .•. 

cvC·) 29 . 80% 21. 72% 40.77% 

2. 2 Maximum Accumulated Deficit for the Case of 
Partial Regulation. Consider the following prob­

ability distributio·n for the net input: 

P(Xt = +1 ) = p 

P(Xt = -1] = q 

Clearly, E(Xt) = p-q and var (Xt) = 4pq. 

In this case, the one-step "restricted" 
transition matrix Pk+l is 



0 

p 

0 

0 

0 

0 

q 

0 

p 

0 

0 

0 

0 

q 

0 

0 

0 

0 

0 

0 

0 

0 

p 

0 

0 

0 

0 

q 

0 

p 

0 

0 

0 

0 

q 

p 

The problem is that the n•th power of thism~trix 
cannot be obtained ~s easily as in the case p•q•l/2, 
where the method of images was applicable. In the 
present case, a procedure similar to Kac ' s (1947) 
could be used, but this writer decided simply to illus­
trate the fact that 

lim 
n....,. 

E(Dnlpartial regulation) 

E(Dnifull regulation) 
0~ (5 . 24) 

Figure 5.3 shows the exact mean maximum deficit 
for the random walk process, for the cases 

(I) II = ...2::.9...."' 0, {p• 0.5) 
2/iXi 

(I!) IJ • ...2::.9.... = 
2/M 

1/2, (p• O. 723606798) 

(III) II = ...2::.9.... = 
2tpq 

l, (p=C.853553391) 

and for n ranging from 1 to 1000. 

Figure 5. 3 indicates that Eq. (5.24) is true. 

E[o.,~ 
100~----------·~-----------,------------, 

0.1 L------------'------------'----------=~-
1 10 100 1000 n 

Fig. 5. 3. The mea.n maximum accumulated deficit for 
the simple random walk process. 

49 

3. Continuous Net Inputs 

Starting with the results obtained in the discrete 
C3se, their continuous analogues are discussed, and 
applications for some particular continuous dis tribu­
tions are made. 

It is clear from Eq. (5.13), 

T T 
d(n) a LT d(n-1) Q d(n-1) T 
I< K + k k + 0 '\• 

and 

that their continuous analogues are 

+ d n-1 (O,y) • u (vn)' (5 .25) 

where 0 .=:_ vn .=:_ y, 

and 
y 

dn(O,y) i(O,y) + f dn-1 (vn-1 ,y) f(-vn-1) dv n-1 0 

+ dn-l (O,y) • u(O), (5 . 26) 

respectively. In the above expressions f(•) is the 
density function of the net input, y is the analogue 
of k and dn(O,y) is P(On>y) = 1 - P (On~) = 
1 - F0 (}"). 

n 

Furthermore, 

-y+v 
f n i(vn,y) • f(x) dx 

and 
+ao 

f f(x) dx. 
v 

n 

(5.27) 

(5.28) 

Using the recursive relation implied by Eqs . 
(5.25) and (5 . 26), 

dn(O,y) = u(O) dn_1(0,y) + i(O,y) 



and continuing in this fashion, : 

Y. Y. 
+ d1(0,y) J ... (n-2) ... J u(v2) f(v

3 0 0 

+ .t(O,y) 

y y 
+ f J 1(vn-2'y) f(vn-1 

0 0 

+ 1 
0 

dv1 dv2 ... dvn-l 

where d1(0,y) • -r f(x)dx • 1 - F
0 

(y). 
1 

(5.29) 

so 

3.1 Normally Distributed Net Inputs. In this case, 
the density of the net input is 

1 -lex- )2 
f(x) •- e 2 11 "'+(x-11) . .rz; 

Notice that the mean net input is 11 and that 
the variance is unity, without loss of genera lity. 
Clearly, for the case of full regulation, 11 :0. 

For n = 1 , the results are obvious but they will 
be pr esented here foT illustration purposes. In this 
case, one has 

- y_ 
dl (O,y) • J + (x-11) dx = <t ( -y- 11) = 1 - ~ (Y+II) 

-
00 (5. 30) 

and thus F0 (y) • ~ (y+ll) for y ~ 0 
1 

is the cumulative distribution function of 0
1

. The 
density function is t hen .. 

f0 (y) = ' (y+11) for y ~ o 
1 

and the mean value of the maximum deficit is 

- -
E (Dl) • f Y +(y+IJ) dy = f (w-11) + (w) dw 

0 II 

-= J w +(w) dw - J II +(w) dw " +(11) - 11[1 - ~ (II)]. 

In the case of full regulation, 11 = 0, then 

E(01) = +(0) • _1_ 

;:z; 
The second moment of 01 is 

ElD~) f 2 
dy = j (w-11)

2 + (w) dw y • (y+ll) 
0 II 

00 

w2 + 
00 

dw + 112 j + (w) • f (w) dw - 211 f w + (w) dw 
II II ll 

where 
00 00 

J w2 + (w) dw = w + (w) I~ + f +(w) dw 
II 

and thus 

E (D~) • II + (II) + (1 + iJ [1 - <t (II)] - 211 + (II) 

,. (1 + 11
2

) [1 - ~(II)] - II + (II) · 

In the case of full regulation, 11 • 0, then 

E(D~) • 1 - ~ (O) • 1/2. 

Some values of E(D1) and E(D~) are given in 
the followi ng tabulation. 



·· .:.. . 

u 0 1/2 1 3/2 2 

E(01) 0.3989 0.1979 0 .0833 0.0293 0.0084 

~coi) 0.5000 0.2096 0.0754 0.0229 0.0060 

Assuming that the gross input (natural discharge) 
has the coefficient of variation equal to 0.25 and 
that the output is constant, Eq. (5.9) says that the 
level of regulation is 100%, 87.5%, 75%, 62.5% and SO\ 
respectively for u = 0, 0.5, 1, 1.5, and 2. Fig-
ure 5.4 emphasizes th~ fact that the mean maximum def­
icit deoreases very fast as the level of regulation 
decreases . 

Fig .. 5.4. 

\ 
\ 
\ 

\ 

' ' ' ............. 

Expected value of o
1 

as a function of the 

level of regulation for independent normal 
net inputs. 

For the case n = 2, Eq. (5 . 29) gives 

d2 (O,y) = d1 (O ,y) u(O) + i(O, y) 

1 2 
Recalling that f(x) = -

1- e- zCx-u) = <1> (x-u) • Eqs. 
l2iT 

(5.27) , (5 . 28) and (5 . 30) can be used as follows: 

-y+vl -y+vl 
£(v1 ,y) = J f(x)dx = J <l>(x-v)dx = ~ (v1-y-u) 

-co 

i(O. y) = ~ (- y-u) = 1 - ~ (y+u) 

u(O) J f(x)dx = J <1> (x- u) dx = ~ (v) 
0 0 

d1 (O,y) = 1 - ~ (y+~) 

and t hus 

d2(0,y) = ~(u)· [l - ~(u+y)] + (1 - ~(u+y)] 

y 
+ J ~(v - y-u) <1>(-v -u) dv 

0 1 1 1 

y 
= [1 + ~(u)] [1 - ~(u+ y)] + f ~(v1-y-u)<J>(v1+u) dv , 

0 

and consequently 
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y 
Hu+y) - <Hu) + t(u) ~(u+y) - J 4>(v

1
-y-u) <1> (v

1
+u)dv1 0 (5.31) 

and 

- ~(- u) Hu+y) 

Noticing that 

Y-11 
= f Hl2w - y- 211) <1> cL + /211) dw 

12 12 -)J 

..L 
12 

.. l H..L + 12u) f Hz) dz = l H..L + 12u)(2~ c..I.J - I] 
12 12 :X. 12 12 12 

12 

one has, f ina lly, 

(5.32) 

Notice that a probability mass exists in the point 
o2 = 0. Its val ue is given by Eq . (5 . 31), making 

y = 0: 

and in the case of f ul l regulation, u = 0, then 

P(02=0) = 1/4, as it should. 

The mean value of o2 can now be found 

E(02) = f y f 0 (y) dy 
0 2 

co 

2~ (11) f y <I> (u+y) dy 
0 

• 2 J _!. . Y • <~> c...r • fi)l) t c..:t.> dy 
0 12 ,12 12 

- j _!. . y ~ c..I. + 12u)dy 
o/2 12 

2~(u) J (u+y) <1> (u+y)dy - 2~(u) J 11 <1> (IJ+Y)dy 
0 0 



+ 2 f 
0 

- 2 

- 1 c-l. • 1211> • cJ.. + l211)dy • j 1211 , c..L + l211)dy 
0 12 ' -fi 0 12 

.. .. 
= 2 • {II) / w +(w)dw - 211 t (II) f cf>(w)dw 

IJ II 

.. 
+ 2fi f w <jl (w) ~ (w-l:211)dw - 411 f "' (w) t (w-/:211)dw 

fill fill 

.. 
- fi J w 4> (w)dw + 211 J ' (w)dw 

fill fill 

2t (II) ~ (II) 211 t (II) (1-t(ll)) 

.. 
+ 2fi / w +(w) t (w-/211)dw - 411 J +(w) t (w-/211)dw 

1211 fill 

fi"' (fill) + 211 [1-t (fill)]. (5. 33) 

To evaluate the integral 

.. 
f cf>(w) t (w-/211)dw 

121l 

one may use the fact that 

• 2 f f0 (y) dy = 1 - t (II) 
0 2 

or using Eq. (5.32) 

or 

or 

.. 
2 ~ (II) f cf> (w) dw + 2 J Hw)t (w-/21l) dw 

.. 
- f cf> (w) dw = 1 - t 2 (11) 

/21l 

.. 
2 t(11) [1-t(ll)] + 2 f '(w)t (w-/211) dw 

flll 
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or finally, 

.. 
2 J cf>(w) t (w-/:211)dw = 2 + t

2
(11) - 2t(ll) - t (fill). 

The integral 

.. 
f w cf> (w) t (w - l:211)dw 

fill 

can be obtained as follows: 

+ f ' (w) cf> (w-l:211)dw 

fill . . 
• t + (fill) + f + (w) + (w-l211)dw 

fill 

1 
.. 2' (fill) + f ' (fiw-11) cf> (ll)dw 

1211 

1 (fill) 1 
cf> (II) f cf> (z)dz =2' +-

fi II 

= t ' (1211) 
1 

(II) [1 - t (II)] . + _, 

fi 

(5. 34) 

(5.35) 

Substituting Eqs. (5.34) and (5.35) in Eq . (5.33) 
after simplifications one has 

(5. 36) 

and in particular, for full regulation, 11 = 0 and 
E(D2) • 12{;. Notice that E(D

2
) • 2 E(D

1
) and thus 

Fig. 5.4 holds, when the values of E(D1) are multi­
plied by two. 

Recalling that the asymptotic mean maximum 
deficit is proportional to In, it is clear that the 
fact that E(D2) = 2 E(D1) is simply a transient 
effect . 

For higher values of n (n = 3,4, ... ) , the 
problem is similar to the one encountered in the study 
of the distribution of the range of partial sums: in­
tegrals which do not exist in closed formula will ap­
pear and will have to be evaluated numerically. Fol ­
lowing the same reasoning exposed in Section IV 2.1, 
this writer decided to approach numerically the entire 
distribution of the maximum deficit, rather than to 
solve numerically only parts of it . 

The most convenient algorithm to this particular 
numerical integration is to choose a binomial input 
such as the one given by Eq. (4.24) , for a large value 
of m, and to apply Eq. (5.13) recursively. Notice 
that the selection of m in the analogue discrete 



distribut:ion is t::lutamount co the select:ion of the 
increment ay in a conventional numerical integration 
a l gorithm. 

The numerical ly obtained density function of 0 
n 

is shown in Fig . 5. 5 for smal l values of n and for 
the case of full regulation (~ = 0). In t his figure, 

as ~~ell 
0 • 0 

n n 
[<I>(~)) • 
t ion of 

as in the next ones, the probability mass at 
is not shown , and it is given in all cases by 

Figure 5.6 compares the exact density func­
(D/In) for n = 8 and n = 30 with the 

asymptotic dens.i ty function, for the case of full reg­
ulation . Notice that 0

0 
has been expressed in terms 

5.0 6.0 7.0 y 

5.0 6 .0 7.0 y 

Fig. 5.5. Distribution of On for independent normal net i nputs (~=0; n=l,2, ... ,7,8). 

1.00 

0.75 

~ 0.50 
c: _a 

Fig . 5 .6. Distribution of D /In for independent normal net inputs (~=0 ; n=8 ,30,~). 
n 
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of 1,0 to allow such comparison. Figure 5.7 compares 
the standardized exact density of On (for n = 15 

and ~ • 0) with the standardize~ asymptotic density. 
Recall that the same comparison has been made in Chap­
ter IV, for the standardized distribution of the range 
In the present case the convergence of the standard­
ized exact density to the standardized asymptotic 

0 .50 

0.40 

density is slower because of the influence of the 
probability mass at On = 0. 

The case of partial regulation is illustrated by 
Fig. 5.8 for ~ = 1. Notice that On has not been 

expressed in units of In, indicating that the mean 
maximum deficit does. not increase as rn. 

./VAR(D0 ) 

Fig. 5.7. Distribution of (Dn-E(Dn))/IVar(Dn) for independent normal net inputs (~•0; n=lS and n=•). 

f Dn ( y) 

1.00 

Fig. 5.8. 

4 5 6 

Distribution of D for independent normal net inputs (~=1; n=25,50,100). 
n 
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Finally, the mean and the variance of Dn are 
shown for various values of n and ~. in Figs. 5.9 

E(Dn) 
10.0 

and 5 .10. Recall that the level of regulation can be 
found by using Eqs. {5.8) and (5 .9) . 

Fig. 5.9. Expect ed value of On for independent normal net inputs {~=0,1/4,1/2, 1) . 

VAR(Dn) 

16 .0 

12.0 

8.0 

4.0 

Fig. 5.10. 

"1/4 

p..:l/2 

J.L= I 

10 20 30 40 50 n 

Variance of D for independent normal net i nputs (~=0,0.25,0.50,1.00). n 
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3. 2 Lapl ace Distributed Net Inputs . Laplace 
distributed net inputs are · studied here because solu­
tions in closed f orm always exist . 

In this case, the density function of the net 
input is 

f(x) = } e-li jx-ll [. (5. 37) 

Notice that the mean net input is ll and that 
its variance is unity. In considering unit variance, 
there is no loss of generality. 

Using Eq . (5.29) for n = l, 

-y 
d

1 
(O,y) = J f(x)dx 

and thus the cumulative distribution function of the 
maximum deficit is 

l 1 -fi(ll+Y) FD (y) = - 2 e ' 
1 

and the probability density function is 

f0 (y) = 4 e- 12 (ll+y), 
l 

(5. 39) 

and the moments of o1 can be obt ained as 

and 

E CD ) f.. f ) d 12 -fill .. f -12 y d l = y D (y y = - e y e y 
0 1 2 0 

12 -fill 
4e ' (5.40) 

.. f 2 d 12 -121l "'! 2 -12 y d y f 0 (y) y = 2 e y e y 
0 1 0 

1 - fill 
= 2 e (5 .41) 

Some values of E(D
1

) 

following tabul ation· 
are given in the 

ll 0 l/2 l 3/2 2 
E (D

1
) 0. 3536 0.1743 0.0860 0. 0424 0.0209 

2 
.E(D

1
) 0.5000 0. 2465 I 0 . 1216 0.0599 0.0296 

Using Eq. (5.9) and assuming that the output is 
constant and that the gross input (natural discharge) 
has the coefficient of variation 0.25, the level of 
regulation is 100% for ll = 0, 87 . 5% for ll = 0.5, 75% 
for ll = 1, 62 . 5% for ll = 1.5, and SO% for ll = 2. 
In this case, the rel ationship between the maximum 
deficit and the leYel of regulation is shown in Fig . 
5.11. 
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0.2 
\ 
\ 

' ' ....... ......... ---o~~--~--~--~~ 
100 75 50 a(%) 

Fig . 5 .11. Expected val ue of o
1 

as a function of 

the level of regulation for i ndependent 
Laplacian net inputs. 

For higher values of n , Eqs. (5 . 27) and (5 . 28) 
wi 11 be used: 

-y+v 
i(vn,y) = f n f(x) dx -y,+vn 12 -12 lx-lll 

2 e dx. 

(5 .42) 

Simi l arly , 

+f.. ~:::'2 r.: I I YL -Y2 X-ll d u(vn) = e x 
v 

n 

1::: ll 1::: = ... = = q J e"2 (X-ll) dx + q J e-v2 {X-ll) dx 
v 

n 

Eq . (5 .43) is valid for 

For the case vn ~ ll, 

0 < v < )J. 
- n-

For n = 2, Eq . (5 . 29) reduces t o 

(5. 43) 

-fiX 
e dx 

(5.44) 

and now Eqs . (5.38), {5 . 42) and (5 .43) can be used: 



l - 12(\.l+Y) 
+- e 

2 

+ YJ 1 ~12(\.l +y-v ) 12 -fiJ- v -\.! [ 2 e l 2 · e 1 dv1 , 
0 

and thus 

or 

-12 (IJ+Y) .l - f2 (21J+Y) d2 (0,y) = e - ;re 

+ "! Y e-12(21J+Y) dvl, 

0 

e-fi(IJ+Y) _ ~ e-fi(21J+y) + 12 Y e-12(21J+y) . 
4 

(5.45) 

Consequently, the cumul a tive dis.tribution 
function of t he maximum defici t is 

.fi(IJ+y) 1 -12(2)J+y) 
F ( v ) = 1 - e- - + e 

D - 4 
2 

and t he density funct ion is 

f
. ( ) _ r::; -f:i'(IJ+Y) .fi -f7(2)J+y) 1 -/2(21J+y) 
D y - •z e - -,- e + -2 ye . 

2 ~ 

Furt hermore , the mean value of the maximum deficit is 

00 

f [1 - F0 (y)]dy = j d2(0,y)dy 
0 2 0 

-fi)J "'f -12 y d 1 - 2fi)J 
00

/ =e e y-;rc 
-fi y 

e dy 
0 0 

-12 y y e dy 

12 -212\l fi -2fi)J fi -fi)J 
-Be +Be =2e . 

(5.46) 

Not ice that E(D
2
) = 2E(D

1
), which 14as al so found 

to be true i n the case of normal inputs . 

The second moment of t he maximum deficit is 

00 

f 2y(l - F
0 

(y) jdy = f 2y d2(0 , y)dy 
0 2 0 

_rz)J .. , -12 y 1 - 212\.l ; -12 y 
2 e y e dy - 2 e , y e dy 

0 0 

/2 -212)J 
00

/ 2 -12 Vd +Te ye ·y 
0 
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In the case of Lapl acian i nputs, Eq. (5 . 29) can 
al1~ays be solved, leading to the exact distribution of 
the maximum deficit, in closed form, for any value of 
n. 1ne int egrals involved can be easily , a lthough 
t ediously , performed . 

The case n = 3 wi l l be s tudied now to s how how 
tedious the procedure is, and also to emphasize that 
E(C3J i s not equal to 3 · E(D1), as the reader may 

be l ed to believe due to t he fact t hat E(D2) = 2•E(Dt. 

Of course, E(Dn) could not be equal to n· E(D
1
), for 

t he asymptotic mean deficit was shown to vary as rn. 
Using Eq. (5. 29) for n = 3, 

+ J 
0 

(5.47) 

where f ( • ) is the density function of the net input 
and where t he followi ng expressions are known f rom 
Eqs. (5 . 38), ( 5. 42), ( 5 .43) , and (5.45): 

1 -12 (IJ+Y) d1 (0,y) = 2 e 

~( ) =!. -12(\l+y-v2) 
v2,y 2 e 

1 -12(1J+Y) 
l(O, y) = 2 e 

1 -12\l 
u(O) = 1 - 2 e 

,. 

- fi(IJ+Y) 1 - 12(2\J+y) 12 -12(2\.l+Y) 
12 (0, y ) = e - 4 e + 4 Y e 

and the following expressions have to be evaluated: 

Using Eqs . (5 . 43) and (5 . 44), for y ~ IJ 

+ 
YJ 1 - 12(v -)J) 12 -121 -v -Il l 

2 e 2 • 2 e 2 dv 2 



a:td for y ~ 11. 

J -- y_f (l 1 -/2 (11-V ) 1 -2e 2] 
0 

Usi ng Eq. (5.42), 

where, for v
1 

+ 11 ~ y , 

and for 

e -12(2v2-vl) d 
v2 

1 e-121v2-v1-lll e-121-v2-~l dv = 1 e-12(vl+211) dv2 
0 2 0 

= y e -12(v1+211) 

and thus, for y ~ 11, 

1 -/2(\J.+y-v ) 
4 e 1 
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l -I2(.311+Y) y_-11 
(II+Vl+ 1) = 4 e f dv1 0 

12 -12()1+3y) y-11 li 
-rre f e 2 2 vl dvl 

0 

l. -12(311+Y) 
+ 4 e I dv

1 y-)1 

1 -l2(3)1+y) 
"'8 e 

2 
(y + 12 2 y+211Y-II 

2 /'I 1 
2 11 - 4) -

1 -12(11+3y) 
+ 32 e 

and, for Y~ll 

-12 (v +211) 
y • e I dvl l 

= l. e-1:2(3\l+y) J dv = l.2 e-1:2 (311+y) 
4 0 1 4 

Now, going back to Eq. (5.47), in the case y ~ ~ 

d (0 Y) _ [e-1:2 (ll+y) 1 -12(2\I+Y) 1:2 -1:2(2\I+Y)) 
3 ' - - 4 e + 4 ye 

1 -1:2()1+3y) 
+ 32 e 

-31:211 ci 11
2 

1:2 312)1 
+e 8 - T- i6 y-16 

+ ~ - ..1....) ] • e-12 Y - .!. e-12 (ll+3y) (5.48) 
4 32 32 

and in the case of y ~ ~. similarly, one has 

d3 (O,y) = [f e -/:211 + e -21211 c4 -tJ 
-31211 l 1:2 1 

+ e (4 - 4 Y + 8)) 

e-li Y- !. e-2/2(\I+Y) 
4 

(5.49) 

and now the cumulative distribution function and the 
probability density function can be obtained by 

, 
! 
I , 
I 

j 

I 
! 

I 
I 
i 
t 

I 
i 
! 
I 

I 

l 
I 
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For instance, in the case of full regulation (\J = 0), 
Eq . (5 . 48) results 

29 7/2 1 2 -12 y 1 -3/2 y 
(32 + 16 Y + 8 Y ) e - 32 e 

and thus 

F ( 29 7/2 1 2 -/2 y 1 -3/2 y 
·o3 y) 1 - (32 + 16 Y + 8 Y ) e + 32 c 

fD3(y) = (1;? + i y + 1 /) e-/2 y- ~~ e-3/2 Y. 

(5 . SO) 

Notice that F0_ (0) = i = (t)3 as i t should . 

For a more general v~rification, consider Eq. (5.49) 
for y = 0. 

d3(0,0) = t e-12\J - ~ e-21:2\J + i e-31:2\J 1 - F
0 

(O) 
3 

Thus 

.. 
I 
0 

(P(X > 0)) 3, as it should. 

.. 
I f(x)dx ) 3 

0 

The mean value of D. is , in general, 
.) .. .. 

[1 - FD (y))dy = I d3(0,y)dy. 
3 0 

Using Eqs. (5 .48) and (5 . 49), one has 

~ 

+ I -312\J 1 2 12 1 -12 y 
e · C4 Y - 4 y + g ) e dy 

0 

+ j e-31211 
jJ 

1 2 1 2 12 312 <s Y - "S" II - i6 Y - IT II 

1 3 -12 y 
+ 4 llY - 32) • e dy 

_ J\J .!..e-212\J. e- 212 y dy _ ""J 1 -12\J - 312 y 
32 ··c e dy 

0 4 \J 

= Ct e-1211 - t e-21211) . f e-.fi Y dy 
0 

12 -2121.1 "'I -12 y 
+ 2 e y e dy 

0 
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'- \J ,- ~ - II 
1 - 3r21J J -r2 yd r2 -3121.1 f -12 v 

+ 8" e · e Y - 4 e y e ' dy 
0 0 

+ !. . -3/21.1 .. ! 2 - fiyd 1 - 2 12\J /1.1 ~ 
8 e Y e y - - • e -2r2y 

11 
4 

0 
e dy 

1 -/21.1 ""f e-312 y dy - 32 e 

312 -121.1 12 -2121.1 12 -21211 12 -3121.1 
=-4- e - 4 e •-;re +I6e 

12 -412\J 
- T6 e 

- c'2 1.12 + !. . \J + 12) e -4121.1 
8 4 8 

+ 3 \J + 3/2) -41:21.1 
I6 64 e 

12 2 1 12. 4,12; 
+ <s \J + I6 . \J - 32) e- \J 

(12 2 
16 \J 

After simplifications , one has 

E(D ) = 312 e-/211 _ 12 e- 2/21.1 + 12 e-3121.1 12 -4/211 
3 4 16 16 - 48 e 

(5 .51) 

and in particular, for \J = 0, 

Some values of E(D3), from Eq. (5.51) , are given in 

the following tabulation: 

\J 0 1/2 3/2 2 

0 . 5103 0.2538 0.1260 0.0624 

The change in the mean value of D as 1.1 
n 

i ncreases can be better appreciated by computing 

E(D 1\J=O) n 

where E(D l1.1=0) is the mean value of D for the 
n n 

case of full regulation. 



In t he following tabulation the expressions 

(I) an!~ (II) 

are compared, using Eq . (5 .40) and (5.51) 

IJ 0 1/2 1 I 3/ 2 1 2 

~xpression I 1.0000 0.4929 o.2432 1 o.u99l o.o591 

~xpression II 1.0000 0.4949 0.2461 1 0.1222 i 0.0605 

Recall that for constant output and for a gross 
input wi th the coefficient of variation equal to 0 . 25, 
the values of IJ = 0, 0.5, 1.0, 1.5 and 2.0 correspond 
to ~ = 100.0, 87.5, 75 .0, 62 . 5 and 50 . 0 percent. 
Notice the drastic reduction in the mean maximum defi ­
cit (and i n practical terms, reduction in storage ca­
pacity required) when the level of regulation 
decreases . 

The objective of t his section was to emphasize 
that even when the net input is such that all inte­
grals i nvolved can be easily performed, the analytical 
solution to the problem still involves long and te­
dious algebraic transformations. Nevertheless deficit 
analysis, as range analysis, is conceptually very 
simple and numerical solutions can be very easily 
found i n all cases . 

3. 3 Clo.sing Remarks . In this section, the 
distribution of the maximum deficit for continuous in­
puts was derived, by analogy with the discrete inputs 
problem. 

Examples of application were given for normal and 
Laplace inputs. Some results are in closed form.s, and 
others were obtained numerically. In this sense , sim­
i larities between def icit analysis and range analysis 
were stressed. 

The asymptotic distribution of the maximum 
deficit was derived in the case of full regulation and 
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some exact densities were compared to the asymptotic 
result, by standardization of variables . 

In a later chapter, examples will be given in 
order to assess the influence of skewness in deficit 
analysi s. 

4. Summary 

The main items discussed in this chapter can be 
summarized as fo llows: 

(i) General approach to the distribution of the 
maximum deficit for independent discrete inputs 
(Eq. (5.5)), 

(ii) Derivation of asymptotic results (Section 2), 

(iii) General approach to the distribution of the 
maximum deficit for independent continuous inputs 
(Eq. (5 . 29)) , and 

(iv) Illustration of convergence of exact results 
to asymptotic ones . 

• The influence of skewness will be i llustrated in 
a later chapt er. It is important to notice that the 
effects of nonnormal inputs are not only due to skew­
ness. For low levels of regulation and low values of 
n, the effect of· nonnormality of symmetric inputs can 
be substantial . For instance, for IJ = 2 (say, SO% 
regulation) and n = 2, the mean maximum accumulated 
defi cit for Laplace inputs (Eq . (5.46)) is almost 150 
percent larger than the mean maximum deficit f or nor­
mal inputs (Eq. (5.36)), and the sk~wness coefficient 
is zero i n both cases . 

Finally, it is important to st ress that the graph 
obtained by plotting the mean net input (which is re­
lated to the level of regulation) against the mean 
maximum deficit (say, storage capacity required) for a 
given value of n, is simply the storage-yield rela­
tionship . Although the storage-yield curve is one 
of t he oldest concepts in wat er resources, t his is the 
first time in which this relationship was determined 
exactly. Of course, depending upon the designer ' s 
criterion, the storage capacity could be some quantile 
in the cumulative distribution function of D rather 
than the mean maximum deficit. n 
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Chapter VI 

RANGE AND DEFICIT ANALYSIS FOR CORRELATED INPUTS 

In this chapter the ~hcory exposed befor e ls 
extended for the case of correlated inputs . Clearly, 
once range and deficit anal ysis have been sho~n to 
follow directly from t he theory of ~larkov chains, the 
generali~ation to correlated inputs is similar to 
Lloyd ' s (l %3) extension of Moran' s 1.;ork and consc­
qu~ntly the same limitations (drnstic increase in the 
si=e of matrices involved, for instance) ar e found 
here . The theory can also be ex tended for seasonal 
inputs . In this case, a different transition matrix 
is considered for each season and the basic approach 
remains unchanged . As a matter of fact , seasonality 
is so easi l y taken into account in range and deficit 
analysis that this writer ~·ill not elaborate on it 3t 
thi~ time . 

1. Range Analysis for Correlated Inputs 

The assumption of i ndependence of input s h3s not 
been made in the derivat ion of f;q . (4 . 9) , and thus it 

holds in general. Recall that l(n) is · he sum of k ~ 

all elements in the n-step "restricted" transition 
matrix of she k . Al so , recall that only in the case 
of i ndependent inputs this m3trix is the n-~i1 powcr 
of t he one-step "restricted" transition matrix . 

In this section, t he case of ~1arkovian inp1,1ts is 
considered and the pr ocedure t o be ou tlined can be 
regarded as a numeric31 integrat ion algorithm to 
obtain the distributi on of the range for the continuous 
case of f irs t order autore~ressive i nputs. 

When the i.nputs follo1v " ~1arkov chain, the 
distribution of t he state of t he system Yt dcpends 

both on the previous state \-1 and the previous 

net input xt-1 ' But xt-1 can be written as 

(Yt-1 - yt-2) and t hus the distribution of yt 
depends on y 

t-1 
and y 

t-2 · The important point to 

observe i n this reasoning is that the net input is not 
given by simpl e subt raction when the boundaries :~rc 
t·ea.chod , but t hh does not nt'fllct the problem because 
once one of ·the boundaries is reached, the system 
r emains at the cor responding absorbing state with 
probability one . 

Consequently the solut ion of the problem involves 
t he consideration of tlio-H~p ~1arkov chain, a:; 
Jescribed in Section II I-1. 3. i n the case 1;hen the 
boundaries are absorbing. Referri ng to cq . (3 .17) 
and {3 . lS) , the clements of the matrix A arc 
a(ijJjk) and when neither nor k are absorbing 
states, the clements in the column (j ,k) constitut e 
Slmply t he distribution of the net input Xt given 

that xt-l • j -k. 

For i llus tration purposes , the s imple dependent 
(-1, •l) pr ocess wil l be studied, and i t will become 
apparent t hat even a process as simpl e as t his one can 
l ead to important and relevant pructical conclusions . 

... 
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ConslJ0r the process characterized by the 
fol l owing marginal distribution: 

P(Xt - + I ) = P(Xt • -1) = 1/2 

and by the foliOI<ing conJition:~l distribution : 

P( \ = 

I< here 

1\oticc 

+l JX 1 = +l) 
t-

+l iXt-1 - I ) 

p + q = 1. 

that E(\) 

cov {Xt, xt-1) = 

where p s tands for 
correlati on . 

- ! Jx = -l l " JJ t - 1 

.. P(\ -I I X l +1) q t-

0, var (\) = l and 

p = p- q - 2p - 1 

the laR-One coeff i cient of 

(6 . l) 

(6 . 2) 

(6 .3) 

N01~ ~onsider a system l< it h ,;rate sp;~cc {0, 1, 2, 
:; , 4} ,;her e 0 and 4 are abs<>rhin!: sratc,; . Using the 
notation introduced in Scc tllln 111 - 1. 3, it i s -c l ear 
that if the initial s tate i s , s:1y , Y0 ~ 2, then the 

joint distribution of the pair y 
I 

where '\ {1, 2) and 61 (3 , 1) ;Jr<' equal to l /2 and 

all ot her 61 (i , j) are equal to :era. 

The joint distribution nf y2 and yl is 

given by Eq . (3 . 18) : 

62 A o1 
(6 .4) 

where A is a square matri:l: of si:e 25 such t hat 

a(O,OjO,O) • a(O , OjO,l ) a(4 ,414 , 3} a(4,•ll4 .~) • 1 

:1(0,1 Jl,2) • a{1,2 j2,3) u (3 , 2·j2,l) a(4 ,3 j3,2) p 

a(l, 2J2,1) a{2, l jl, 2) = a (2 , 3J 3,2) a(3, 2 J2,3) q 

and all other a(ijJjk) nrc equ3l t o zero . The 
reader may find it necessary to write Jo~~ the entire 
natrix as exp!aincd in Section 111-1.3, t o fully 
underst3nd the reasoning. 

Fortunately the vector 6t and the matrix A 

can be simplified by dimination of the impossible 
transitions , and Eq . (6 .4} can be rewritten as 



62(0,0) 

62(0,1) 

52(1.2) 

02= 62(2,1) 

02(2.3) 

62(3.2) 

02(4 . 3) 

02(4, 4) 

1 1 0 0 0 0 0 0 0 

0 0 p 0 0 0 0 0 0 

0 0 0 q p 0 0 ~ 1/2 

0 0 q 0 0 0 0 0 • 0 

0 0 0 0 0 q 0 0 

0 0 0 p q 0 0 0 

OOOOOpOO 

00000011 

0 

1/2 

0 

0 

0 

p/2 

0 

q/2 

q/2 

0 

p/2 

0 

((>.5) 

Now the distribution of Y3 given Y
0 

2 can 

be obtained using Eqs. (6.2) and (6.5). Notice that 
this result is simply the three-step transition proba-

bilities q(3)(i,2) for i = 0, 1, 2, 3, 4: 

q<
3 l co,2) = P(Y3 = olv

0 
= 2) "' 6

2
(o ,o) + o2CO,l) 

+ p· o2(1,2) = p/2 

q(
3
) (1,2) = P(Y3 = liY0 = 2) q•o2 (2, 1) 

+ p·o2 (2,3) = q/2 

q(3) (2 , 2) = P(Y3 = 2i Y
0 

2) 

+ q·o
2

(3,2) = o 

q(3) (3~2) = P(Y3 = 3 IY
0 

= 2) 

+ q• 62(2 , 3) • q/2 

q<
3
) (4,2) P(Y3 " 4IY0 = 2) p·62(3 , 2) 

+ 62(4 , 3) + 62(4,4) = p/2 

Eqs. (6.6) can be written in matrix notation, as 
follows 

q(3) (0 , 2) 1 1lp00000 
62(0,0) 

02(0,1) 

q(3)(1,2) 0 0 0 q p 0 0 0 02(1,2) 
I 02(2,1) 

q(3)(2,2) 1 0 0 q 0 0 q 0 0 02 (2,3) 

q(3)(3,2) j 0 0 0 p q 0 0 0 
62(3,2) 

02(4,3) 
q(3) (4,2) OOOOOpl 02(4,4) 

or, by usi ng Eq. (6.5): 0 

q<3> (0 2) 
' I 

1 1 p 0 0 0 0 0 0 

q(3)(1, 2) : OOOqpOOO 1/2 

q(3) (2,2) 0 0 q 0 0 q 0 0 . A . 0 

q(3) {:) , 2) p, 0 0 p q 0 0 0 0 

IJP) (4,2) 0 0 0 0 0 p 1 1 1/2 

0 

0 

(6 . 6) 

(6 . 7) 
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Equation (6.7) represents one column (the third) 

in t he three-step transition matrix Q•(3). A similar 
reasoning leads to the other four columns of this 
matrix: 

1 0 0 0 0 

1 1 p 0 0 0 0 0 0 l/2 0 0 0 

0 0 0 q p 0 0 0 0 0 1/2 0 0 

Q' (3) = OOqOOqOO • A • 0 1/2 0 0 0 (6.8) 

0 0 0 p q 0 0 0 0 0 0 1/2 0 

00000p11 0 0 1/2 0 0 

0 0 0 l/2 0 

0 0 0 0 

The three-step "restricted" matrix Q(3) can be 

. obtained by deleting the first and last rows and 
columns of Q'(3): 

. 1: ::::::~ 
~ OOpqOO ~ 

0 0 0 

1/2 0 0 

0 1/2 0 

• A • 1/2 0 0 

0 0 1/2 

0 1/2 0 

0 0 1/2 

0 0 0 

(6. 9) 

For general n > 2 the n-step "restricted" 
transition matrix is-given also by Eq . (6 .9), pro-

. b · d b An-2 vided A 1s su st1tute y 
Recall that Eq. (6.9) corresponds to the case 

when the state space is {0,1,2,3,4} . For the general 
case of state space {0 ,1, 2, ... ,k,k+l}, the matrix 

Q(n) would have size k and the matrix A woul d 
have size 2k+2. For instance, for k ~ 5, 

Q(n) 

0 0 0 q p 0 0 0 0 0 0 0 

0 0 q 0 0 q p 0 0 0 0 0 

0 0 0 p q 0 0 q p 0 0 0 

0 0 0 0 0 p q 0 0 q 0 0 

0 0 0 0 0 0 0 p q 0 0 0 

. An-2, 

0 0 0 0 0 

l/2 0 0 0 0 

0 1/2 0 0 0 

1/2 0 0 0 0 

0. 0 1/2 0 0 

0 1/2 0 0. 0 

0 0 0 1/2 0 

0 0 1/2 0 0 

0 0 0 0 1/2 

0 0 0 1/2 0 

0 0 0 0 1/2 

0 0 0 0 0 

(6 . 10) 



and 
,.....- -

1 1 0 0 0 0 0 0 0 0 0 0 

0 0 p 0 0 0 0 0 0 0 0 0 

0 0 0 q p 0 0 0 0 0 0 0 

0 0 q 0 0 0 0 ! 0 0 0 0 0 
i 

0 0 0 0 0 q p i 0 
0 ' 0 

0 0 

A 0 0 0 p q 0 0 ! 0 
! 

o 1 o 0 0 (6 . 11) 

0 0 0 0 0 0 0 j q p i 0 0 0 

0 0 0 
I 

0 0 p 
q I 0 0 I 0 0 0 

0 0 0 i 0 0 0 o o o 1 q 0 0 

0 0 o 1 o 0 0 o p·-;-r·o 0 0 

0 0 0 0 0 0 0 0 0 p 0 0 

0 0 0 0 0 0 0 0 0 0 1 1 
- -

where lines have been drawn to emphasize that the 
matrix is obviously patterned . ( ) 

To use Eq . (4. 9) , the quant i t y Ak n is needed. 

Recalling that Ak (n) = lT Q~n) _!and using Eq . (6 .10) , 

one has, for k = 5: 

0 

1/2 

l/2 

l/2 

1/2 

= (0 0 q 1 1 1 1 1 1 q 0 O]·An-2• 1/2 

1/2 

1/2 

l /2 

1/2 

1/2 

0 

(6 .12) 

Using the fact that the elements in the columns 

of the matrix Q' (n) add .to unity, it can be shown 
that Eq . (6 .12) can be r ewritten as 

0 

1/2 

1/2 

1/2 

1/2 
n-2 

5- [ 1 1 p 0 0 0 0 0 0 p 1 l]·A • 1/2 (6.13) 

1/2 

1/2 

1/2 

l/2 

1/2 

0 
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or, equivalently, for gener a l k, 

0 

A~n) = k- (1 1 p 0 ... 0 p 1 l}·An- 2• 1/2 

1/2 

0 

where A is a square matrix of size 2k+2, 

(6 .14) 

Using Eq. (4.9) and (6.14), the probability 
density function of the range was computed for n 50 
and n = 100 and for p = 0.50 (p=O), p = 0 .60 
(p=0.20), and p = 0.75 (p=O.SO) . The r esults are 
shown in Fig. 6. 1. 

Figure 6 . 2 indicat es that for large values of n 
tne exact -distribution of the standardized range of 
partial sums of Markovian inputs tends to the asymp­
toti c distribut ion of the s tandardized r ange, found by 
Feller (1951). 

Obviously, the moments of the range can also be 
obtained numerically. In particular, the mean is 
given by Eq. (4.12), where K is a l arge number. Ap­
plying Eqs. (4.12) and (6 . 14), i t is readily seen that 

n-2 
(1 1 p 0 ... 0 p 1 l]·A • 

0 

1/2 

1/2 

0 

where A is a square matrix of size 2K+2. 

(6. 15) 

Figure 6 . 3 shows the values of E(Rn) given by 

Eq . (6.15) for various values of p and n. For 
large n, these results are approximations of the con­
tinuous case of the f i rst order autoregressive proces~ 
This figure illustrates the known f act that the square­
root law prevails asymptotically for summands of any 
sequence of random variables subjected to the cent ral 
limit theorem, and confirms a conj ecture of Yevjevich 
(1967), namely, that the following relationship holds 
asymptotically: 

E(Rn) = ~ • m = 1. 5958 fn .!'§. (6 .16) 

Equation (6 . 16) is formal ly derived in Appendi x A. 

The main contribution of Fig . 6.5, however, is to 
i llus trate the drastic increase wi th p i n the size 
of the transient region. 

2. Adjusted Range Analysis for Correl ated Inputs 

In this section Hurs t ' s (1951) idea of studying 
the mean unadjusted range conditioned to the last par­
tial sum being equal to zer o is extended for correlated 
i nputs. 
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E(R,J 
1000~------,--------.-------,------~ 

: 1.5958.,(ri .A!? 
1-P 

O.l ~1 ------~10=------~~oot:::------:-:lo:-:oo~---:-:1 o=-.o~c::-:o:-t'"'" 

Fig . 6.3. Expected value of R for the dependent 
(-1,+1) process . n 

Consider a system with state space {0,1, ... ,k+l} 
such that states 0 and k+l are absorbing states . 

tet q~n) (u,u) denote the probabilit y of a transi­

tion f rom state u = 1,2, ... ,k to the same state u. 
Obviously this implies that t he boundaries (absorbing 
s tates) have not been reached. But this is simply the 
joint probability P(Mn ~ k- u, JmnJ ~ u - i, Sn = 0) . 

Using the same reasoning that led to Eq. (4.7), one 
has 

(n) (n) (n) 
- qk- l (u,u) - qk-l (u-l,u-1) + qk_2(u-l,u-l) 

and then 

k 
P (Rn = k-1, Sn=O) "' L P (Mn k-u, lmn I = u-1 ,Sn <=0) 

u=l 

k 

l: 
k- 1 
I 

(n) k (n) 

u=l 
q~n)(u,u) 

u=l 
qk-l(u,u) - L 

u=2 
qk- l (u-l,u-1) 

k-1 
+ L q~~~ (u- l,u-1) 

u=2 

k k-1 
= L q~n)(u, u) - 2 L q(n) (u,u) 

u=l u=l . k-1 

k-2 
+ L q (n) 

k-2 u=l 
(u,u) 

where special attention should be paid t o the fact 
that the adjustment in the values of u in the above 

summations i s valid. Furthermore , notice that 
u= l 

q~n) (u,u) is s imply the trace (sum of elements ofthe 
J 

principal diagonal) of t hen- step transition matr ix. 
Using an obvious notation, one has 

0) (n) 
'Ilk 2 (n) · + (n) 

vk-1 vk-2 
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or, equivalently, 

(n) 
vk+l 2 (n) + "(n) 

'Ilk 'k- 1 

and finally, 

P(R = kjS = O) n n 
( 

(n) 
vk+l 2 (n) + 

'Ilk v(n))/P(S = 0) 
k-1 n 

(6.17) 

Notice that independence of inputs has not been 
asstDDed and thus Eq. (6 .17) holds in general. Follow­
ing the reasoning that led to Eq. (4 .12) , it can be 
shown that 

E(R Is = 0) = K - [vK(n)/P(S = 0)] 
n n n (6.18) 

where K is a sufficiently large number so that 

P(R < KjS = 0) = 1 n- n 

In the case of the dependent (-1,+1) process 
defined by Eqs . (6 . 1) and (6 . 2) , the n-step "re­
stricted" transition matrix (and thus, its trace) can 
be obtained as shown in the previous section . To use 
Eq. (6 . 18), P(Sn=O) has to be eval uated for the pro-

cess defined by Eqs. (6.1) and (6. 2) . Fol lowing 
Gabriel (1959), it can be shown that for n even, 

n-1 p 
n- 1 

E 
j=l 

c . .( 2 )c . 1 
(n;2) rtJ n; rly-J 

. (l::.Ep )j 
(6.19) 

where [ · ] denotes the integer part of t he argument. 

N01o1 Eq . (6. 18) can be used. · Values of 
E(R Js = O) were determined for various combLnations 

n n 
of n and p = 2p- l and the results are shown in 
Fig . 6.4 . This figure indicat es that the fol lowing 
relationship holds asymptotically : 

E (R 1 s = o) ~ rrrn fi":;'p = 1. 2s33 rn j.!.!.E.. n n I T /'H) 1-p 

( ·6. 20) 

~nd i llustrates the drastic increase with p in the 
si ze of the transient region . Eq . (6. 20) is formally 
derived in Appendix A. 
E(R,IS,•O) 

1000~------r-------r-------~------; 

O.l Ll ------:1-!:-0-----.I~C~0::------;10~0;\-;0::-----;;IO:;;tJQ~O-~ 

Fig. 6 . 4. Expected value of (R Js =0) for the 
n n 

dependent (-1,+1) process. 



The argument that variables that ultimately 
.fo llow the square-root law may behave as higher powers 
of n in a pre-asymptotic sense was initi ally made by 
Lloyd (1967), reasoning wit~ independent random vari­
ables . For dependent random variables, Fig. 6.4 indi­
cates that this argument is much stronger than initial­
ly t hought. 

The results obtained from Eq. (6.18) for 
p = 1/2 (p = O) agree exactly with Hurst ' s original 
result. This can be verified analytically: for inde­
pendent inputs, the n- step "restricted" transition 
matrix is simply the n• t h power of the following matrix 

0 1/2 0 

1/2 0 1/2 

0 1/2 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 1/2 0 

1/2 0 1/2 

0 1/2 0 

which can be found using the method of images. In 
particular, the elements i n the principal diagonal of 
the n-step "restricted" transition matri x are given by 
Eq. (3.23), for s = u: 

... 
q~n) (u,u) =j=: .. [vn(2j(K+l)+u,u) - vn(lj(K+l) : .u, u) ] . 

n 
Using the fact that vn(t,r) = nC(n-r+t)/2(1/2) , one 
has 

t 
j=-"'· 

(6.21) 

But K is a very large number and thus the f irst t erm 
in the right hand side (RHS) of Eq. (6.21) is nonzero 
only when j = 0 and the second term in the RHS of 
this equation is nonzero only when j = 0 and j = 1. 
Consequently, Eq. (6.21) can be rewritten as 

and thus 

K (n) 
t qK (u,u) 

U='l 

n 
(1/2) • K • n cn/2 
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or 

(6.22) 

For p 1/2, Eq. (6.19) reduces to t he known result 

P(S ., 0) c C 
12

(1/2)n _ 
n n n (6 . 23) 

Substituting Eqs . (6. 22) and (6 . 23) in Eq. (6 .18), one 
has 

E(R Is = o) = x -n n 

(K+l)nCn/2(1/2)n - 1 

n 
ncn/2 (1/2) 

2n 
-c-- - 1 
n n/2 

which is Hurst's original result . Notice that 
to be even, so that Sn can be equal to zero. 

Sterling approximation, it is easily seen that 

3. Deficit Analysis for Correlated Inputs 

n has 
Using 

In Chapter V it was shown that P(Dn > k) is 

simply the probability that the system is at (absorb­
i ng) state 0, at time n, given that the system was at 
(reflecting) state k+l at time zero. In this sec­
tion this reasoning is applied to the dependent (-1,+~ 
process defined by Eq. (6.1) and (6.2). As i n the 
previous sections, the problem can be solved by con­
sidering a two-step Markov chain, now with one absorb­
ing and one reflecting boundary. 

Consider a system with state space {0,1, ... ,k, 
k+l} such that state 0 is absorbing and state k+l 
is reflecting . For simplicity, consider t he case k=5. 
If the initial state Y

0 
is k+l, clearly the joint 

distribution of the pair Y1 and Y0 is 

e? -1 {o
1 

co,o) o
1 

(O,l) o
1 

(1,2) o
1 

(2,1) o
1 

(2,3) o
1 

(3,2) 

01 (3,4) 01 (4,3) 01 (4,5) 01 (5 ,4) 01 (5,6) 01(6,5) 

01(6,6)} 

where the impossibl e transitions have been deleted and • 
where 61 (6,6) = 1/2, o1 (5,6) = 1/2 and all other 

o1(i ,j) are equal to zer o. 

Using Eq. (3 .17), the joint distribution of the 
pair Yn_2 and Yn_ 1 is 

~ An- 2 ~1 
un-1 u (6 . 24) 

where the matrix A i s shown by Eq . (6.25). Notice 
that lines have been drawn to emphasize the obvious 
pattern of this matrix. 



. ', 

~ 
-

1 0 0 0 0 0 0 0 0 0 0 0 

0 p 0 0 0 0 0 0 0 0 0 0 

() 0 q p 0 0 0 0 0 0 0 0 

0 () q 0 0 0 0 0 0 0 0 0 c 

0 0 0 0 0 q p 0 0 0 0 0 0 

0 0 0 p q 0 0 0 0 0 0 ! 0 0 

0 0 0 0 0 0 0 q p 0 0 0 0 

0 0 0 0 0 p q 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 q p 0 0 

0 0 0 0 0 0 0 p q 0 0 
10 

0 

0 0 o! 0 0 0 0 0 0 0 0 q ,q 

0 0 0 0 0 0 0 0 0 p q ' : 0 0 
t 

0 0 0 0 0 0 0 0 0 0 0 IP p 
--

(6.25) 

Using Eqs. (6.24) and (6.2), it is readily seen 
that the probability that the syst em is at st ate 0 at 
time n given that it was at stat e k+l at time zero 
(i . e ., the probability that on is larger thank) is 

P(On > k) = 6n-l (0,0) + on_1 (0,l) + 6n-l (1,2) 

or, equivalently, 

1.00 

~ -...: 
)( 
~ 

~ 
...... 0.50 c -0 

00 

1.00 
p "'O 

~ -...: 
~ 

~ 
...... 0.50 c 
0 -

J n-2 ~(On> k) • [1 1 p 0 .... 0 • A 

where A is a square matrix of size 2k+3 . 

0 

0 

1/2 

0 

1/2 

(6. 26) 

Using Eq . (6.26), the distribution of Dn was 

obtained for the cases n = 50 (p = 0.50, p = 0.60, 
p = 0 . 7 5) and n = 100 (p = 0. 50 , p = 0. (,0 , p = 0 . 7 5 ). 
The results are shown in Fig . 6 . 5 , and they can be con­
sidered numerically obt ained solut i on for t he distri­
bution of t he maximum accumulated deficit of normal 
autoregressive processes (first order) when the lag one 
cpefficient of correlation is p = 0 (p = 0. 5), p = 0. 20 
(p = 0. 60) and p = 0.50 (p = 0.75). Figure 6.6 in­
dicates t hat for large values of n the s tandardized 
distribution of tr.e maximum deficit for ~larkovian in­
puts tends to the asymptotic r esult derived in Section 
V. 2.1. Finally, Fig. 6.7 shows the expected value of 
D for various combinations of n and p and for 

n 
mean net input ~ = 0 (full regulat ion). Notice the 
simi l arity between the results for ~ : 0 and 
E(R IS = 0) (Fig. 6.4). Simi l ar results can be ob­

n n 
tai ned f or the case of partial regul ation . 

4 . Summary 

In this chapter, range and deficit analys i s were 
ext ended to the case of correlated inputs. Even 

4 5 6 
X /../fi 

00~~~~------~---=~~~--~~4======~5------~6~~ 
x/.fii 

Fig. 6. 5. Distribution of On/In for Markovian input s (p=0,0.20,0.SO; n=SO and n=lOO). 
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though the simplest possible case (the dependent 
( -1, + 1) process) was us.ed for illustration, the results 
led to i mportant practical conclusions. 

A final remark is in ordet, having to do with 
deficit analysis when the input can assume more than 
two positive values. In this case, when the reflecting 

0.50 

state is reached and the system continues at this 
state in the next unit of time, the net input is un­
known and a bivariate Markov chain rather than a two­
step Markov chain has to be considered. The solution 
is practically the same, the only difference being 
that for bi variat·e Markov chains none of the entries in 
the transition matrix A are identically equal to zero . 

n = 100; p=0.5 

0::: 
0 

g0.30 
~ 

1.0 
D0-E(00 ) 

.,/VAR(00 ) 

Fig. 6. 6. Distribution of [Dn - E (On)] /Var (Dn) for ~larkovian inputs [(n=lOO; p=O . SO) and(n"""; p=O) ]. 

Fi~. 6.7 . Expected value of Dn for the dependent (-1,+1) process (~=0). 
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Chapter VII 
APPLICATIONS TO PRACTICAL HYDROLOGY 

1. Range Analysis 

Using the procedure described in previous 
chapters, the distribution of the range can be found, 
at least numerically, for a wide variety of cases of 
practical import ance . Engineers who use the range as 
d~sign criterion for the case of full regulation can 
now design for quantiles (say, the value r such that 
P(Rn ~ r) = q where q is a probability level chosen 

by the designer) rather than design only for the ex­
pected value. 

For large values of n the asymptotic 
distribution of Rn (Feller, 1931), corrected for the 

first two moments, can be used as an approximation to 
the exact distribution of Rn even when the i nputs 

are Markovian. This conclusion emphasizes the rele­
vance of previous studies in range analysis, which 
concentrated on approximate expressions of the first 
t~>'O moments of Rn for cor related inputs (Yevjevich, 

1967; Sal as La-Cruz, 1972) . 

2. Adjusted Range Analysis 

In this section, E(R IS • 0) is assumed to be 
n n 

an approximation of E(R~/5), following Hurst (1951). 

E( RnlSn=O) 
or 

E(R~/S) 

Suppose that one has a l a•·gL' ntullht•r· ni' t ime 
series relative to Gaus:; i. ;tn-MIIrkov i :rn rnoJc Is ~~ ·i th vur­
ious degrees of correlation. In the case of fi rst 
order Markov processes, the vh:;ervt•d va l t;l)s o r (H~/S) 

will fall around their expect ell va lliL'S , approximated 
by the family of curves shown in Fig. 7.1, anJ a simi­
lar behavior may be anticipated for hi}:hl· •· nrJcr 
models . When one considers the totality of observed 
values (R~/5), regardless of the degree of correla-

tion of the underlying process, a straight I inc (HISS­

ing through the point A (R~/S = I, n • 21 with 

s lope 0.75 will apparently fit we ll a ll tilt• points, 
simply because this straight line fits rc:rsonab I y we 11 
the family of curves of exj:octed values. In p:rrti.cu­
lar notice that the two lines connect ing point A to 
points B and C have slopes equal to 1. on and n. 50, 
respectively, and the whole region where thl) pairs 
(R~/S, n), are expected to fall is bOI.nJl·d hy those 

lines . Thus, it can be expected that for this hypo­
thetical large number of Gaussian-M;J rkov ian t i nw 
ser ies one would find a frequency distribution nf the 
slope K similar to the one found hy llur:<t, which is 
reproduced i n Fig . 7 . 2 . 

1000 ~------~--------~--------~~------
K=I.OO 

/ 
/ K:0.75 

100~--------~--------+-~~~~~/~------~ 

A 

0.1 ~--------~--------~--------~---------L---
1 10 100 1000 10,000 n 

Fig. 7. 1. Expected values of (R Is =0) for the dept•ndent (-J ,+1) 
process (curves) as cBmpRred t o llurs t ' s empirical law 
E(R~/~) = (n/2)K for K• 0.50,0 . 75,1.00 (straight li.nes). 
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Fig. 7.2 Frequency distribution of the index K 

In Fig. 7.3., the family of curves E(Rn lsn = 0) 

is compared with Hurst's data (Table 7 in his paper). 
Notice that the objective here is not to claim that 
Hurst's data corresponds specifically to first order 
autoregressive processes, but rather to emphasize that 
due to the drastic increase with p in the size ofthe 
transient region, one may easily confound an apparent, 
pre-asymptotic departure from the square root law with 
a definitive, asymptotic departure. 

Another example of possible confusion between 
pre-asymptotic behavior and actual behavior will be 
given. Mandelbrot and Wallis (1969b) used, among 
other time series, the data from the St. Lawrence 
River (Yevjevich, 1963) to argue that the rescaled 

range R*/S increases faster than n°·
5 

and thus 
n 

that "f or practical purposes, geophysical records 
must be considered to have an ' infinite' span of 

statistical interdependence." The interesting point 
is that the same data have been studied by Yevjevich 
(1963), who concluded that a simple first-order auto­
regressive model fitted this particular data well. 
Depending on the estimation procedure the lag one co­
efficient of correlation could be estimated by 0.705 
or 0.785. In Fig. 7.4 the exact values of E(RniSnaO) 

for the dependent (-1,+1) process with p = 0.75 are 
compared to a straight line with slope equal to 0.90 
for n < 100. Clearly , the fact that the data from the 
St . Lawrence River (n < 100) shows a slope close to 
0.90, cannot be regarded as conclusive evidence of de­
parture from the square root law in an asymptotic 
sense. 

3. Deficit Analysis 

The immediate application of deficit analysis is 
in the determination of the exact storage-yield rela­
tionship. This relationship is obtained by plotting 
values of the storage required against the correspond­
ing level of regulation. Using the procedure outl ined 
in Chapter V, the distribution of the maximum defi cit 
can be found, at least numerically , for a ~ariety of 
cases of practical importance. The extens1on to the 
case of correlated inputs , presented in Chapter VI, 
has limitations, but at least indications of the ef­
fect of correlation on the maximum deficit can be 
found. 

For completeness , a simple example will be given, 
having to do with the influence of skewness on the ex­
pected value of the maximum deficit Dn. Assume that 

the natural discharge can be approximated by a nega­
tive binomial distribution : 

EtRniSn=O) 
or 

R•;s IOOO~------~---------.--------.--------, 
n 

Fig. 7.3. 

O.l Ll -------:I~O-----~IOt0~-----:-;1 0~0;-;:0;-----;;::IOj,Ovovo~n 

Expected values of (R Is • 0) for the dependent (-1,+1) process (curves) 
as compared to Hurst' ~ s[mpl e values of R~/S (points). 
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E(R~S0 =01 

1000~--------~----------,----------, 

and 

_. 

0 ·1'-1 -------',o,.....------~-::'oo~----:-:,o:-:o~o=--n 

Fig . 7.4 Apparent slope of E(R IS =0) 
n n 

for p=0.75 and n<lOO. 

P(Zt = i) = (r+i-l)Ci ·{ qi (i = 0,1,2, ... ). 

It is well known that for this distribution 

rq/p, 

Var(Zt) = rq/p2, 

E[(tt - .E(Zt))3J = rq(l+q)/p3 . 

and thus 

c '" 
E((Zt - E(Zt))

3
) 
~ (7. 1) v [var(Z )] 3/ 2 rrq 

t 

For p=q=l/2 and r=2, one has 

E (Zt)• 2 Var(Zt)"4 and Cv=l.5 , 

and the following cases of net input can be considere~ 
i) Xt=(Zt-2)/2; thus, E(Xt)•O, Var(Xt)=l and 

Cv=l.5. 

ii) Xt=(Zt·-1)/2; thus, E(\)"1/2 , Var(Xt ) =l and 

t.:v• l. 5. 

The values of E(Dn) were obtained for both 

cases, for n = 1,2, ... ,10 and the results were com­
pared with E(Dn) for normal inputs . This is shok~ 

in Fig. 7.5. As expected, the influence of skewness 
for the case of full regulation is less strong than in 
the case of partial regulation. Furthermore, one 

E!Dnl 
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3.0 

2.0 

• c.=o 
o c. • I.50 

Fig. 7.5. Influence of skewness on the expected 
maximum accumulated deficit. 

cannot "a priori" state whether skewed inputs will 
lead to larger or smaller values of E(Dn). Notice 

that CV = 1.5 is :rel atively high for ·river 

discharges. 

In the case of partial regulation, some doubt can 
be cas.t on comparisons like the one shown in Fig. 7. 5, 
for even though the new input has mean 1/2 and unit 
variance for both the negative binomial and the normal 
input, they may or may not correspond to different 
levels of regulation. In the case of the above 
example, the coefficient of variation of Zt was 

equal to one and thus, for ~ = 1, On is identically 

equal to zero . The same difficulty arises when 
studying exponentially distributed inputs , which was 
done in terms of range analysis only. In summary, the 
reader should keep in mind that comparisons of this 
type are dangerous, and that for low levels of regula­
tion, each case is a special case. 

4. Summary 

In this chapter the application of range and 
deficit analysis to the design of storage capacities 
was discussed. Of course, range analysis applies to 
both full and partial regulation cases. One may argue 
that deficit analysis should be used in all cases, for 
the sake of consistency and uniformity of criteria. 

The main section of this chapter dealt 
exclusively with the so-called Hurst phenomenon. The 
exact values of E(R IS = 0) for the dependent (-1, 
+1) process were com~arRd with actual data, to argue 
once more that short memeory models do produce "Hurst­
like sequences . " This same conclusion was reached by 
Matalas and Huzzen (1967), who used the Monte-Carlo 
method and generated a large number of sequences fol ­
lowing a first order autoregressive model. 
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Chapter VIII 

SUMMARY AND CONClUSIONS 

The main objective of this study was to 
investigate two properties of the partial sums of ran­
dom variables: the range and the maximum accumulated 
deficit. The range Rn or the adjusted range R~ 

are used by some engineers in the design of storage 
capacities for full regulation of river discharges 
(Salas La-Cruz, 1972; Hurst, 1951; Fiering, 1965). The 
maximum accumulated deficit D is used in the case 

n 
of partial regulation (Hurst, 1951; Fiering , 1965). 

In this paper a general approach to the 
distribution of the range of partial sums of indepen­
dent random variables was developed. Starting with 
discrete random variables, the distribution of the 
range was shown to follow from the ·theory of Markov 
chains, when the state space contains two and only two 
absorbing states (the boundary states). By analogy, 
the distribution of the range for the case of inde­
pendent continuous random variables was easily ob­
tained. Several examples of application of the gener-·· 
al formulae to particular probability distributions 
were given. Some results were obtained in closed fo~ 
and others were obtained numerically. In the case of 
continuous random variables such that the solution is 
necessarily numerical, it was argued that the most 
efficient approach consists of two steps: i) discre­
tization of the input and ii) application of the gen­
eral procedure for discrete random variables. 

For each type of input considered, the exact 
distribution for finite values of n were compared to 
the asymptotic result found by Feller (1951), either 
by standardization or by considering the variable 
Rn//0. The conclusion was that the asymptotic result, 

when corrected for the first two moments, is a good 
approximation of the exact distribution, even for low 
values of n. Other conclusions, such as the relative 
lack of importance of skewness and other departures 
from normality were previously known from simulation 
studies (Yevjevich, 1965). 

The specific contribution of this paper to range 
analysis is that by using the approach described, the 
distribution of the range, and consequently its mo­
ments, can be obtained (at least numerically) for a 
wide variety of cases of practical interest. This is 
important because it allows engineers to use criteria 
other than the mean range (quantiles, for instance) in 
the design of storage capacities. 

In another chapter of this paper, a general 
approach to the distribution of the maximum accumu­
lated deficit On was described. Starting with in-

dependent discrete random variables, the distribution 
of On was shown to fo llow from the theory of Markov 

chains , when the state space is such that one boundary 
is absorbing and the other is reflecting. By analogy, 
the distribution of the maximum deficit 0 for the 

n 
case of independent continuous random variables was 
obtained. Some examples of application were also 
given and again the solution of the continuous case 
by discretization was argued to be the most efficient . 
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The asymptotic distribution of On for the case 

of mean net input with expectation zero w~s rlerivP.d 
and compared to results for finite values of n. The 
conclusion was that the asymptotic result, when cor­
rected for the first two moments, is a good 
approximation of the exact distribution, for 
moderately large values of n is the existence of 
probability masses at the point Dn = 0, for finite 

values of n. Some conclusions, like the drastic re­
duction in storage capacity required when the level of 
regulation decreases , and the fact that this reduction 
depends on the value of n (indicating that Hurst's 
empirical formulae (Eq. 2.25) and (2.26)) are not ade­
quate), were previously known from simulation studies 
(Fiering, 1965). A new conclusion is that departures 
from normality in general and skewness in particular 
may have strong influence , for l ow values of n and 
low levels of regulation. 

• The specific contribution of this paper to 
deficit analysis is that, by applying the approach de­
veloped, the distribution of On' and consequently its 

moments, can be obtained (at least numerically) for a 
wide variety of cases of practical interest . This is 
important because it allows the exact determination of 
the storage-yield relationship, one of the oldest con­
cepts in water resources engineering. 

The analogies between deficit and range ana1ysis 
and Moran's theory of reservoirs were also pointed out 
In so doing, the extension of the theory exposed to 
the case of· seasonal inputs was merely mentioned and 
the extension to correlated inputs was made for very 
simple cases. The same limitation found by Lloyd, 
namely, the drastic increase in the size of the ma­
trices involved, was present here. However , even 
though only a very simple discrete correlated input 
was considered, the analysis led to important practi­
cal conclusions: i) the asymptotic distributions of 
·Rn and Dn' when corrected for the first two moments, 

are good approximations of the exact distributions of 
Rn and Dn even for Markovian inputs, ii) the 

square root law for the mean range holds asymptotical­
ly (this .was previously known) but the size of the 
transient region (the region where the mean range 
behaves as higher powers of n) increases drastically 
with the degree of serial correlation, and iii) for 
the case of inputs following a simple Markov chain, the 
effect of correlation is to increase the storage ca­
pacity required by a factor smaller than l(l+p)/(1-p). 

In particular, Hurst's idea of approximating the 
rescaled range R~* = (R~/S) by the unadjusted range 

conditioned to the last partial sum being equal to 
zero (R Is = O) was extended to the case of inputs 

n n 
following a Mar"kov chain, and the drastic increase in 
the size of the transient region (found before for the 
unadjusted unconditioned range) was noted. These re­
sults were compared to Hurst's results and the con­
clusion was that one can question the statement made 
by some authors (Mandelbrot and Wallis, 1969, and 
others) to the effect that short memory models fail to 
reproduce some drought characteristics . 

f 
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APPENDIX A 

In this Appendix, an alternative expression for 
the mean conditioned range of partial sums of Markov­
ian inputs (see Eq. (6. 1) and (6.2) in the text) is 
derived, and some asymptotic results are formally ob­
tained (see Eqs . (6.16) and (6 .19) in the text). 

A.l. The Mean Conditioned Range. 

The mean conditioned range is twice the mean 
conditioned maximum partial sum, which can be obtained 
by using the tail of its cumulative distribution 
function: 

E(R Is • O) • 2E(M Is =O) 2 2 t P[M >h iS •OJ 
n n n n h=O n n 

= 2 E P[Mn>h; Sn=O)/P[S
0

=0]. 
h=O 

(A.1) 

To state the Mn is larger than h and Sn is 

equal to zero is equivalent to say that there exists 
an epoch m such that the sum of the inputs x

1
,x2' ... , 

xm equals h+l for the first time (let us denote 

such an event by S(l)) and that the sum of the re-
m 

maining inputs 
that s(l ) =h•l 

m 

Xm+l'Xm+2, .. . ,Xn equals -h-1. 
implies that Xm=+1, and thus, 

Note 

t=n 
P[Mn>h;Sn=O] = i P[(S~l)=h+l; i Xt=-h-1) I Xm=+l). 

m t=m+1 (A . 2) 

Using Eq. (6. 2), one has 

t=n t=n 
P( r x =-h- llx =+1) = q · P[ r x =-hlx =- 1] 

t•m+l t m t=m+2 t m+l 

t=n 
• p · P( r 

t=m+2 
X •-h-2 IX =+1] 

t m+l 

t =n 
q· P[ r 

t=m+2 

t •n 
• p · P [ r 

t=m+2 

X • +hiX =+1] t m+l 

X =-h-2IX =+1]. t m+l 

Using this result recursively, one has 

t=n t=n 
P[ r 

t•m+l 
X =-h-l iX : +1] 

t m q· P[ l: X =+hiX 1=+1] 
t "m+2 t m+ 

t=n 
+ p•q•P( l: X •+h+liX 2=+1] 

t=m+3 t m+ 

2 
t .. n 

+ p q •P( E X • +h+2 IX • +1] 
t =m+4 t m+3 

t•n 
+ p3q·P[ E X =+h+3IX 4=+1~ . . 

t=m+S t m+ 

(A. 3) 

where only finitely many nonzero terms exist. 
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From Eqs. (A.2) and (A.3), one has 

{ 

t•n 
P[Mn>h;Sn=O] = m!: q·P[(Sm(l)=h+l; r X =+h) IX =+l] 

t•m• 2 t m+ 1 

t=n 
E X =h+l) IX 2•+1] 

t • m+3 t m+ 

t=n 
i X =h+2)IX •+1) 

t m+3 t=m+4 

+ ••. } • (A. 4) 

. The general term in f:q. (I\. 4 ) ( i.e . , the term 
l: p1q P( • )) involves the probability of the event 
m 
that the first m inputs add to h+ 1 for tho fi rst 
time and that the last n-m-i-1 inputs add to h+i 
(given that Xm+l+i is equal to +1 ) for all possible 

vaiues of m. But this is simply the probability of 
the event ~hat n-i-1 inputs add to 2h+i+l, and thus 
the general term in Eq. (A.4) can he written as 

i 
p · q · P(Sn-i-1 2h+l+i]. 

Now Eq. (A.4) can be simplified to 

.. i-1 
P(Mn>h;Sn=O) = q l: p P(S .= 2h+i). (A.S) 

i= I n-l 

Using Eqs. (A.l) and (A.S), one has 

2q; pi-lP[S .> i]/P[S =0). 
. n-1- n 
1=1 

(A. 6) 

Equation (A.6) is an alternat ive expression for 
the mean conditioned range, given before hy the more 
general result from Eq . (6.18). In order to use 
Eq. (A.6), the value of P(\=j l is needed, for gener-

al t and j. This result is known and due to 
Gabriel (1959). In particular, P [Sn 2 0 J is given by 
Eq. (6.19) . 

A. 2. The Asymptotic ~lean Conditioned Range . 

To derive asymptotic results, the fact that 
t 

s = t 
!: Xi is asymptotically normally distributed 

i= l 
with mean zero and variance tp/q can be used to 
rewrite Eq. (A.6) as 

E(R is =0): 2q ~ pi-
1,C(-(i - l ) ]/((n-i) p;q]

0
·
5}/P[S •OJ. 

n n i"'l n 
(A. 7) 

Let i* be a large nurnber such that pi* • 0 

and let n be still larger , so that i*/(n-i*)O. S ~ o. 
Then ~{[-(i-l))/((n-i)p/q) 0 · 5 l : ¢ (0) = ! for all 

2 
values of i <i • , and Eq. (A.7) reduces to 

i * . 
E(R Is ~o) • q E p

1
"'

1;P(s =OJ = 
n n l=l n 

1/P(Sn• O) 

(A.. 8) 



where P[Sn=O) is given by Eq. (6.19); for large 

values of n, it can be shown that Eq. (6.19) can be 
approximately written as 

-o'. 5 -0.5 P[S =0] : (m/2) (p/q) . . n (A.9) 

Using Eqs. (A.8) and (A.9) and recalling that 
p=2p-l , one gets finally Eq. (6.20): 

E(RniSn=OJ " .19 ~" l.2533/il m 
A. 3. The Asymptotic Mean Range 

Let Eq. (A.6) be rewritten as 

E(R ]S =0) = 2q ; pi- lP[S .>i-1)/P[S =OJ . 
n n i=l n-1 n 

It can be shown that this is a parti cular case of 
the following more general result . 

E(R ]s =s) = 2s + 2q n n ; pi-lP[S .>s+i-1)/P[S •s]; 
. n-1 n 
1=1 s >O. 

(A.lO) 

'" i -1 1 [ J o E(R ]s =s) = 2q t p P[Sn-i > - s+i -1] P Sn=s ; s~ · 
n n i=l (A.ll) 

For very large values of n, one can us e the 
following approximation: 

P[S >s) zP[S >s ] ~P[S. 
2
>s+l] =P[S 

3
>s+2] 

n n- 1 n- n-

: . . . : P[S .• >s+i*-1) n- 1 
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where i* is a value large enough so that pi* : 0. 
Then Eqs. (A.lO) and (A.ll) simplify to 

13(Rn]Sn=0) =2s + 2 P[Sn>s]/P[Sn=s]; s~O. 

E(R js =0)=2P[S >- s)/P(S =s); s~O. n n n- n 

The mean range i s given by 

(A.l2) 

(A.l3) 

E(R) = E(E(R ]S )) = t E(R jS =s) •P(S =sJ. n n n n n n 
s 

Using Eqs. (A.l2) and (A .13) , after routine 
transformations , one has 

E(R ) = 2E( jS j) - 2 P[Sn>O] n n (A.l4) 

where ]sn ] denotes the absolute value of Sn. 

Recalling that n is large, the normal approximation 
can be used again: .. 

E(Rn) = 2 j j 2 • x • e·(x
2
1(2np/q)) • dx - 1 

0 mp/q 

= 2Af[- -1. 

Recalling that p=2p-l, one gets finally Eq. 
(6.16): 



Key Words: Range Analysis, Storage Defici t Analysis , 
Water Storage, Storage Design. 

Abstract: Proper~ies of partial sums of random variables 
are investigated: the range and the maximum accumulat ed 
deficit. The r ange is used in the design of storage capa­
cities for full flow regulation and the maximum accumu­
lated deficit for partial r egulation . 

An appr oach to distributions of the range of partial 
sums of independent random variables is developed. For 
discrete random variables the distribution of the range 
follows· from the theory of Markov chains, with the absorb­
ing boundary states. By analogy, the distributi ons of the 
r ange of part ial sums of continuous, independent random 
variables are given either in cl osed form, or obtained 
numerically . 

Key Words: Range Analysis, Storage Deficit Analysis, 
Water Storage , Storage Design. 

Abstract: Properties of partia l sums of random variables 
are inves tigated: the range and t he maximum accumulated 
deficit. The range is used in the design of storage capa­
cities for full flow regulation and the maxi mum accumu­
l ated deficit for partial r egul ation. 

An approach to distributions of the range of partial 
sums of independent random variables i s developed. For 
discrete random variables the distribution of the range 
follows· from the theory of Markov chains, with the absorb­
ing boundary states. By analogy, the distributions of the 
range of partial sums of continuous, independent random 
variables are given either in closed f or m, or obtained 
numerically . 

-~~""-..........-~"~-.................. -~,.. ... ..-....c.;..~ .... J~IN!I· "; .,...._,;u....,.~~~~ ..,. 

Key Words: Range Analysis, Storage Deficit Analysis, 
Water Storage, Storage Design. 

Abstract: Properties of par tial sums of random variables 
are invest igated: the range and the maximum accumulated 
deficit. The range is used in the design of storage capa­
cities for ful l flow regulation and the maxi mum accumu­
lated deficit for partial regulation. 

An approach t o distributions of the range of partial ·· 
sums of independent random variables is devel oped. For 
discrete random variables t he distribution of the r ange 
follows from the theC'ry of Markov chains, with the absorb­
ing boundary states . By analogy, the distributions of the 
range of par tial sums of continuous, independent random 
var iables are given either in closed form, or obtained 
numerically. 

Key Words: Range Analysis, Storage Def icit Analysis , 
Water Stor age, Stor age Design. 

Abstract: Properties of partial sums of random variables 
are investigated : the range and the maximum accumulated 
deficit. The range is used in the design of storage capa­
cit ies for full flow regulation and the maxi mum accumu­
lated deficit for part i al regulation. 

An approach to distributions of the range of partial 
sums of independent random variables is developed. For 
discrete random variables the distribut ion of the range 
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An approach to distributions of t he maximum accumu­
lated deficit of partial sums of independent random 
variables is developed . For discrete random variables , 
the distribution of the maximum accumulated deficit follows 
from the Xheory of Markov chains, with one boundary state 
absorbing and the other reflecting. The distribution of 
the maximum accumulated deficit of partial sums of contin­
uous, independent random variables is obtained numerically. 
New asymptotic results are derived. Similarities between 
range and deficit analysis and ~loran ' s theory of reserwirs 
are pointed out, with the t heory exposed extended to 
serially correlated random variables. Practical applica­
tions are discussed and a brief note on the so-called 
Hurst phenomenon is included. 
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