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ABSTRACT

Two properties of the partial sums of random variables are investigated: the range and the maximum
accumulated deficit. The relevance of this study follows from the fact that the range (or the adjusted range)

is used in the design of storage capacities for full regulation of river discharges and the maximum accumulated
deficit is used in the case of partial regulation.

A general approach to the distribution of the range of partial sums of independent random variables is
developed. Starting with discrete random variables, the distribution of the range is shown to follow from the
theory of Markov chains, when the state space is such that the boundary states are absorbing. By analogy, the
distribution of the range of partial sums of continuous, independent random variables is obtained. GSome results
are given in closed form, and others are obtained numerically.

Similarly, a general approach to the distribution of the maximum accumulated deficit of partial sums of
independent random variables is developed. Starting with discrete random variables, the distribution of the
maximum accumulated deficit is shown to follow from the theory of Markov chains, when the state space is such
that one boundary state is absorbing and the other is reflecting. By analogy, the distribution of the maximum
accumulated deficit of partial sums of continuous, independent random variables is obtained. Some results are
given in closed form, and others are obtained numerically. In particular, new asymptotic results are derived.

The similarities between range and deficit analysis and Moran's theory of reservoirs are pointed out and
the theory exposed is extended to the case of serially correlated random variables.

Practical applications are discussed and a brief note on the so-called Hurst phenomenon is included.
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Chapter |
INTRODUCTION

1. Preliminaries

The theory of stochastic processes applied to the
design and operation of reservoirs has emerged in re-
cent years as one of the most dynamic topics of sta-
tistical hydrology. It has attracted engineers
simply because the inherently stochastic nature of
hydrological phenomena could not be ignored. It has
attracted statisticians not only due to the extremely
interesting mathematics involved but also because of
the obvious relationships between this problem and
other areas of statistical interest such as the theory
of provisioning and the queuing theory.

The growing world shortage of water resources,
the increased competitions between water used, and the
technological advances of society in general drama-
tized the importance of the study of the theory of
reservoirs. However, the problem is extremely com-
plex. In dealing with annual streamflows, for in-
stance, the assumption of independence of events may
be acceptable; however, in dealing with daily, weekly
or monthly flows, the correlation structure is sig-
nificant. Furthermore, such stochastic processes are
2pt to be nonstationary due to seasonality. To all
these problems, the variabilty in water demand and the
competition between water used have to be added.

A good way to illustrate the complexity of the
problem is to approach it from a historical viewpoint.
In order to do so, a few definitions are needed.

Let Xi be a sequence of random variables, and

Si w X, o+ X, * = Xk = iRissy N

1 Z - i
Mn = max (0, SI’ 52,..., Sn)
m, = min (0, Sl’ 52,..., Sn}
R, = M -nm . (1.1)

The random variable S. is called the cumulative
or partial sum, Mn the maximum partial sum, mn the

minimum partial sum and R the range of partial

fums (see Fig. 1.1). In this paper, Mn and m are

not called surplus and deficit, as in some other works
on this subject, to avoid confusion with another con-
cept which will be introduced later.

Another set of definitions follows when each
component of the partial sum is adjusted for the sam-

pie mean X_:
n

i
[ ]
B = 8y~ ﬁsn
= *
M; max (0, ST. 55..‘.. Sn)
= mi " * *
m; min (0, 51. Sz...., Sn)
R* = M* - m* . (1.2)

n n n

The random variable S; is called the adjusted

partial sum, M; the adjusted maximum partial sum, m;

the adjusted minimum partial sum and K
adjusted range (see Fig. 1.2).

In this paper, the underlying random variable
X; will be referred to as net input, or simply input.

S.
A '

Xz

7 M s

| 2 & v
- RI‘I

Fig. 1.1. Definition of the maximum partial sum
Gﬂn}, the minimum partial sum (mn), and
the range (Rn).
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Fig. 1.2, Definition of the adjusted partial sum
(Si}, the adjusted maximum partial sum
(M;], the adjusted minimum partial sum
(m;], and the adjusted range (R;].

2. Brief Historical Review of Storage Problems

The problem of the design of reservoirs was
treated initially by W. Rippl (1883).* Although the
stochastic nature of river flows and water demands
was ignored, Rippl's work is important because it
introduced the concept of mass-curves as a tool to
determine the storage capacity required.

*Name and/or date in parentheses refer to the author's

name and date of publication given in the
bibliography.
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Later, A, Hazen (1914) published the first paper
in which the problem was seen within the context of
uncertainty. In this paper, data from several river
stations were transformed to comparable values by
"standardization." The result was the production of
enough data to approach the problem from a probabilis-
tic viewpoint. Incidentally, in this paper Hazen pre-
sented his invention of the "probability paper," a
well-known graphical tool used by statisticians and
engineers.

C. E. Sudler (1927) treated the problem of
reservoir design by extending records of, say, 50
years, into artificial records of 1000 years. The
method consisted of writing the observed annual runoff
values on cards, which were shuffled and drawn one by
one, without replacement, until all cards were used.
Following this procedure twenty times, the artificial
record was generated. The technique is obviously
poor; for instance, the maximum and minimum values
of the historical record are necessarily the maximum
and minimum values of the sample of size 1000. How-
ever, the importance of Sudler's work derives from
the fact that he was possible the first man in statis-
tical hydrology to use simulation methods.

The next influential paper in this field was
written by H.E. Hurst (1951). Using a modification of
Rippl's idea of mass-curve, and an impressive quantity
of long-term annual records, Hurst computed for each
record the cumulative sums of the departures of the
annual totals from the long-term mean. The storage
tequired to yield the average flow, each year, was
taken as the range from the maximum to the minimum of
these cumulative totals (see definition of adjusted
range in Fig. 1.2). Hurst showed that the storage
computed in this manner, from long-term records of

’ .72
natural phenomena, was proportional to nU 9, where

n is the length of the period of time. In the same
paper Hurst found that the mean range when the "vari-
ation from the mean is distributed normally" is pro-

portional to n%>. He concluded that although "the

frequency characteristics of river discharges (in the
investigations of Messrs. Hazen and Sudler) are
assumed to be like those of random events: this is
only an approximation "in cases in which storage over
long periods of time is concerned.'' The apparent
departure from the square-root law found in this paper
became later known as the '"Hurst phenomenon."

Subsequently W. Feller (1951), whose attention
had been called to Hurst's paper, attacked the problem
using the theory of Brownian motion, in a sophistica-
ted and much celebrated paper. He found the asymptot-
ic distribution of the range and adjusted range of
partial sums of independent random variables, and con-
sequently the asymptotic moments. It was then made
clear that because the partial sums of independent
random variables Xi with finite variance are asymp-

totically normally distributed, the asymptotic distri-
butions of the range and adjusted range are indepen-
dent of the distribution of the random variable Xi.

Feller mentioned that the Hurst phenomenon could con-
ceivably be explained starting from the assumption
that the variables xi are not independent. Inci-

dentally, Feller's results were derived under the
additional assumption that the mean value of the ran-
dom variable Ii was zero, which is relevant only in

terms of the unadjusted range.

Later, P.A.P. Moran (1954) initiated a new line
of research. Instead of studying simply the proper-
ties of partial sums in order to develop ideas about
the convenient size of the reservoir, Moran studied
the influence of the inflow and various operation
policies in the distribution of the amount of water
stored, given the size of the reservoir.

For a delightful reading of the more recent
history of stochastic reservoir theory, the interested
reader is referred to E. H. Lloyd (1974a).

It is the belief of this writer that the
complexity of the problem has been well demonstrated
by the fact that, in the pursuit of a solution, nota-
ble engineers like Rippl, Hazen, Sudler and Hurst were
able, respectively, to introduce the concept of mass-
curve, to invent such a useful device as the ''proba-
bility paper,'" to pioneer methods of simulation, and
to raise a question still unresolved.

3., Approaches to Storage Problems

Approaches commonly used in the design of
storage capacities may be classified into three groups:
empirical, experimental, and analytical. The empiri-
cal approach consists of the application of Rippl's
mass-curve to the observed hydrological sequence. In-
put and output are both taken as (nown functions of
the time. This approach is cleariy inadequate, for
the probability of repetition of the same flow sequence
is zero. Unfortunately, the method is still quite
widely used.

The experimental approach is simply the
application of the so-called Monte-Carlo method or
data generation method. It is also called the syn-
thetie hydrology method, and it consists of the gen-
eration of a large number of flow sequences statis-
tically indistinguishable from the historical record.
Rippl's method, or a modification of it, is applied
to each flow sequence, and the probability distribu-
tion of storage capacities is approached from a rela-
tive frequency viewpoint.

The analytical approach consists of the
derivation of exact, asymptotic, or approximated dis-
tributions, and moments of statistics related to the
design of storage capacities, and it is the subject
of this paper. Within this approach, two lines of
research are usually identified: the line initiated
by Moran and expanded considerably in the last two
decades, and the line initiated by Hurst and Feller,
which consists of random variables. In this paper
these lines of research will be referred to as Moran's
analysis and range analysis, respectively.

Range analysis is sometimes referred to as the
infinite reservoir theory. The reasoning behind this
seems to be that, although the object of the study is
simply the properties of the partial sums of random
variables, one may conceive the existence of a reser-
voir capable of storing any water surplus and of sup-
plying any deficit of water. An infinite reservoir
clearly satisfies such conditions. On the other hand
Moran's analysis is sometimes called the finite res-
ervoir theory even though in some cases the top (or
the bottom) of the reservoir is abolished in order to
assure mathematical tractability and elegance. Per-
haps the contributions from Moran's school which
abolish the top {or the bottom) of the reservoir
should be referred to as the semi-infinite reservoir
theory.
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Fig. 1.3. Definition of the maximum accumulated deficit D = max {di}'

One of the reasons to study the range is that
since Hurst's initial work, the behavior of the range
as n increases has acquired independent mathematical
and scientific interest as an indicator of the struc-
ture of stochastic processes (Anis and Lloyd, 1975).
The emphasis in range analysis has been on the deter-
mination of the expected value of the range for ex-
changeable (equally correlated) inputs simply because
it follows directly from the expected value of the
maximum (or minimum) of partial sums of exchangeable
inputs, which is easier to study.

In terms of Moran's analysis, a very large number
of papers deal with the time-dependent probability
function of storage levels, their limiting distribu-
tions, probability of water overflow and probability
of emptiness of the finite reservoir, for stationary
independent inflows. The most significant contribu-
tion in this field was the extension of Moran's ini-
tial idea to seasonal and serially correlated inflows,
which was given by E. H. Lloyd (1963,1964). After
this contribution, several papers were published
studying what became known as the Lloyd reservoir.

4, Objectives and General Approach in this
Investigation

Some engineers interpret the range as the
required storage capacity to avoid both overflows and
emptiness of the reservoir. This is an interpretation
valid only in the case of full regulation of dis-
charges. Full regulation of river discharges is tan-
tamount to assuming that the random variables Xi

presented in Eq. (1.1) have zero expectation (i.e.,
the average net input is zero). When the average net
input is positive, the regulation is only partial and

1< <N

overflows are implied in the design procedure. In
such a case, the partial sums may appear as shown in
Fig. 1.3 (recall that the xi‘s in this case are

still departures from the desired regulated discharge
but their expectation is no longer zero). Clearly
there can exist a random number of accumulated defi-
cits, which are the random variables {di; i=1.2,...,

w} shown in Fig. 1.3. The required storage capacity
is the maximum of these accumulated deficits, say,
D“. The study of the random variable Dn will be

called maximum accumulated deficit analysis, or simply
deficit analysis, and will be one of the subjects of
this paper.

Another objective of this paper will be to study
the exact distribution of the range. In so doing, it
will be shown that both range analysis and deficit
analysis can be approached from a finite-reservoir
viewpoint.

It is well known that Moran's analysis is a
direct application of the theory of Markov chains,
when the boundaries are reflecting. It will be shoum
that range analysis can be derived from the same the-
ory, when the boundaries are absorbing. Furthermore,
it will be shown that deficit analysis follows from
the theory of Markov chains with one absorbing and cne
reflecting boundary. It is interesting to be able to
derive all analytical approaches to storage problems
by stmply changing the character of the boundary in
the theory of Markov chaina.

As a consequence, the distribution of the range
will be shown to be closely related to the probability
of emptiness before overflaw and to the probability of
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overflow before emptiness in the finite reservoir.
Also, the obvious relationship between the maximum
accumulated deficit and the probability of emptiness
with or without overflow of a finite, initially full
reservoir will be pointed out,

The basic approach in this investigation will be
to work with discrete random variables as input (that
is why the term Markov chains rather than Markov pro-
cesses is used). Starting with independent identical-
ly distributed random variables, the distribution of
the range and of the maximum accumulated deficit will
be studied. The possibility of extension to the case

of seasonal and serially correlated inputs will be
indicated. The case of continuous random variables as
input will be studied in some cases in which the inte-
grals involved exist in closed form. When this is not
the case, the distribution of the range and the dis-
tribution of the maximum accumulated deficit will be
obtained numerically, simply by "discretization' of
the input (i.e., by choosing an "analogue" discrete
distribution to approximate the continuous input).

It is the hope of this writer that the reader
will come to the conclusion that, at least in the
single reservoir problem, the gap between theory and
practical needs is not as wide as generally believed.



Chapter I
REVIEW OF LITERATURE

This chapter summarizes the main results in the
study of the range of partial sums (range analysis),
following J. D. Salas-La Cruz (1972) and briefly de-
scribes some of the contributions to the study of the
finite reservoir (Moran's analysis). Furthermore, the
lack of theoretical work on the maximum accumulated

deficit (deficit analysis) is discussed and a note on

the Hurst phenomenon is included.

1. Range Analysis

The asymptotic distribution of the maximum
partial sum (Mn} of independent identically distri-

buted random variables with mean zero and unit vari-
ance was given by P. Erdos and M. Kac (1946) as:

M X 1 2
PII-B| < x) = ﬁ [e2¥ du . (2.1)
/n U

The asymptotic mean adjusted range of partial
sums (R;] of independent identically distributed

random variables with unit variance was given by
H. E. Hurst (1951) as:

E{R#) * /“T“ . 1.2533n7 | (2.2)

Hurst used a combinatorial lemma related to the maxi-
mum partial sum, in the particular case in which the
last partial sum (Sn) equals zero. Multiplying the

result by two, he obtained the asymptotic mean adjust-
ed range. It is not obvious at first glance that one
can approach the adjusted maximum partial sum by
studying the unadjusted maximum partial sum condi-
tioned to Sn = 0.

W. Feller (1951) found the asymptotic
distribution of Rn as well as the asymptotic dis-

tribution of R;, for independent identically distri-

bButed random variables with mean zero and unit vari-
ance, using the theory of Brownian motion. In
particular, he obtained the asymptotic mean and vari-
ance in each case:

= 8n c
E{Rn] /“ 1.5958n" , (2.3)
Var {Rn} = 4n(ln 2 - 2/w) = 0.2261ln , (2.4)
. /hm . s
E{R;} = /5 ® 1.255n° (2-5)
and
..,
Var {R;} . E‘(g - 1) n = 0.0741n . (2.6)
The exact expected value of the maximum of the
partial sums Sy Sz. FE Snl of independent stan-

dard normal variables was given by A. A. Anis and
E. H. Lloyd (1953):

a1
a8 wokes % B8, G894

E[max(S,, S
L /Zr is1

e

It can be easily shown from Eq. (2.7) that

n
E(M ) = L. 3 % (2.8)
2 i=1

which leads to the expected value of the range

n
E(R } = /%_ 151 e (2.9)

A. A, Anis (1955) published the exact second
moment of the maximum of the partial sums Sl' Sz,...,

5n and later (1956) presented a recursive relation-

ship for numerical evaluation of all the moments of
the maximum of the partial sums Sl' SZ""’ Sn of

independent standard normal variables.
Results similar to the above can be obtained
using®* F. Spitzer's (1956) identity, which is more gen-

eral. Considering a sequence of independent and iden-
tically distributed random variables and Sj =

Xp # Xy * eee ® Xg, My = max (0, S), Sy, -ov s S))

and S = max (0, Sj), Spitzer derived the identity

]
; B.(t) zj ex ; 5=1 i
; =exp[Z J " oa.(t) 2], (2.10)
j=0 3 j=1 3

where Bj{t] and Rj(t) are the characteristic func-
tions of M. and S;, respectively.

j

From Eq. (2.10), the moments of M. can be
written as a function of the moments of S;, which are

easier to compute. In particular, it can be shown
that

n, +
E(M)= £ i " E(s]} . (2.11)
n 5 1
i=1
and
2 e, R,
E{Mn} = I i E(Si ) o+
i=1
n i-1
¢ E P itE=nt E(S;] E(S;_j} ]
i=2 j=1

(2.12)
Equation (2,11), applied to the case of
independent normal variables with mean zero and vari-
ance az leads to

E(M ) = i [var {si}]’s . (213

ne13

1
V2w i=1

and thus

n
E(R } = /—f-_ifl il [var {si}]!s , (2.14)

where var(S.) = i 02. Notice that for o =1 Eq.
(2.14) reduc%s to Eq. (2.9), as it should.
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M. E. Solari and A. A. Anis (1957) derived the
first two moments of the maximum adjusted partial sum
for independent, standard normal variables:

e
E{M*} = % /5‘3_; 151 i en)7E (2.15)

and

2 n- e
E{MEZ} . % L /n s g i(2i-n) ]
s = —
3* -1 (i-)°
(2.16)

P. A. P. Moran (1964), exploring Spitzer's result

nl/T

further, showed that E[RnJ varies as , when

considering the range of partial sums of independent
random variables having the characteristic function

exp (-|t|") (i.e., symmetric stable randomvariables).
A procedure for obtaining the exact distribution
of Mn’ m and Rn was described by V. Yevjevich

(1965), for the values of n =2 and n = 3. For
higher values of n, Yevjevich used the data generation

method to investigate the properties of Mn’ L Rn,

M;, m;. and R;, for a first order autoregressive

process. He also used the data generation method to
assess the effects of nonnormality, in the case of
independent random variables.

M. J. Melentijevich (1965), using the data
generation method, found approximate equations for the
expected value and variance of the range when the out-
put is linearly dependent on storage.

V. Yevjevich (1967) suggested that the expected
range of linearly dependent normal variables could be
expressed by Eq. (2.14), which was derived for inde-
pendent normal variables. Using the data generation
method, he showed that for the case of the first and
second order autoregressive models and the simple
moving average scheme the results given by Eq. (2.14)
closely approximate the exact (and unknmown) values.

J. D. Salas-La Cruz (1972) found the exact
expected value of Mn for the case of random vari-

ables with general covariance structure, for n = 2
and n = 3. Salas also proposed approximate expres-
sions for the mean and variance of the range of
periodic-stochastic series.

D. C. Boes and J. D. Salas-La Cruz (1973)
summarized the existing expressions for the expected
range and expected adjusted range, showing that they
follow from a single expression, namely the expected
range of the partial sums of exchangeable random vari-
ables. They also obtained a new asymptotic result:

«} = (M0 = I
E{RY} = [2 (1 - p)] (2.17)
for exchangeable normally distributed random variables.
Notice that when the coefficient of correlation p is
equal to zero, Eq. (2.17) reduces to Eq. (2.2) as it
should.

Subsequently, J. D. Salas-La Cruz and D. C. Boes
(1974) elaborated on the previous study, and among
other things, graphically illustrated the transient
nature of the general formulas for the expected ad-
justed range.

A. A. Anis and E. H. Lloyd (1975), following
Boes' and Salas-La Cruz' reasoning with exchangeable
random variables (1973), showed that the exact expected
value of the rescaled adjusted range (meaning the ratio
between the adjusted range and the sample standard
deviation) for independent normal summands is

L) [ T
FYCC S 0 T n-i%
E{Rx+) E T,

(2.18)
o r(%) i=1

which leads to the asymptotic value given by Eq. (2.2),
The relevance of this result follows from the fact
that Hurst's experimental study referred exactly to
the rescaled adjusted range. Furthermore, Anis and
Lloyd showed that the same result holds for exchange-
able multivariate normal summands. Therefore, the
asymptotic value of R;* departs drastically from Eq.

(2.17), which indicates that in some cases the assump-
tion that the behavior of the rescaled adjusted range
can be inferred from the behavior of the adjusted
range is not justifiable.

-

One should notice that the emphasis in these works
has been on the expected value of the range, simply
because it can be approached through the study of the
maximum partial sum, which is a simpler problem. The
exact distribution of the range and the determination
of higher moments have been approached only by the data
generation method with the exception of Yevjevich's
exact solution for the distribution of Rn for the

cases n=2 and n = 3. The only other work which
neither uses the data generation method nor approaches
the range through the maximum partial sum is Feller's
derivation of asymptotic results.

2. Moran's Analysis

A slight modification of P.A.P. Moran's (1954)
initial work will be presented. The model is formu-
lated in discrete time, by considering a finite res-
ervoir of size k and the water net input (input
minus output) as a sequence of independent, identical-
ly distributed discrete random variables such that
P(X, = i) = p,.

The reservoir is such that when full, it continues
full only if the next input is nonnegative (and thus
an overflow may occur), and when empty, it continues
emply only if the next net input is equal to zero.
Then the amount of water stored follows a simple ho-
mogeneous Markov chain with state space {0, 1, 2,...,
k} and one step transition matrix as follows:

A o 1 2 3 ... k2 k-1 k
B [By By Ky By  om R Mo By
1 |5y B by By B Vg Ve
2 Py Py P P, Pyes Popes Pge2
3 e Py Pap Pp Pxes Pgeg Poges
k-2 | Puge2 Pek.s Pagg Paxs o+ Pgp Py Pp
k=3 1 Popey Poxez Pepes Puges - P Po P
kool ug W Yer Ypes U, Uy Y




where the elements in the first and last rows are to
be interpreted as follows:

¥ D g ¥ eor (350.0.2,0000K)

L. = +p .
Ly ¥y %D

Vg T ¥y Wy T Pigug ¥ e

(3=0,1,2,...,k).
Once the amount of water stored follows a
homogeneous Markov chain, Moran and others emphasize
the problem of determining the '"steady state" proba-
bilities, which will be discussed in the next chapter.

The transient distribution of the amount of water
stored was reported by N. U. Prabhu (1965), for the
case of geometric inputs. For illustration purposes,
this result will be presented.

Consider the case in which the net input has a
geometric distribution:

p, = e a0, 1,02 ) (2.19)
where 0 <a <] and a +b = 1. For a finite :
reservoir of size k-1, the transition matrix is

| o0 1 2 . k-1
0 | atab a 0 e 0
1 | a? ab a S 0
2 | a® ab? = A 0
k-2t ok gk a
k-1] b* pd gk L b
(2.20)

Let the n-step transition probabilities be denoted by
m . 4 L - = i
G s =Ky = §lY, = 1]
where ¥ is the amount of water at time t.

Prabhu defined the generating function

6Gi,1) = = ™ 5,1 2" (Jz] <)

n=2 (2.21)
and showed that
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Notice that to "invert'" this result, to obtain

q'(“) (j,i) is not an easy task. For n = 10, say,
one has to differentiate G(j,i) ten times with re-
spect to z. Clearly this result indicates that the
usefulness of some results in closed forms can be

questioned. It is more appealing to the engineer to

solve the problem numerically, for q'fn} 3,3} is
simply the (j,i) entry in the n-th power of the
transition matrix shown in Eq. (2.20)
L

Other authors analyzed the problem of emptiness
with overflow and before overflow. B. Weesakul's
(1961) result, typical of the rest, refers to the case
of geometric inputs. He analyzed the cases of first
emptiness before overflow and first emptiness regard-
less of occurrence of overflows. This second result
is transcribed below for illustration purposes and
because of its relevance to the concepts exposed in
Chapter V.

Using the same input shown in Eq. (2.19),
Weesakul showed that for a finite reservoir of size
k-1 which had an initial content u > 0, the proba-
bility of first emptiness occurring at time t + u,
regardless of how many times overflow occurs, is given
by

1
[5 K

-aa@p)*t  :
v=]1

2t+u-1 .
- 151nu

[Zcosuv} "

" {a sin[{k—u+1}uv] - b sin[(k-u+1]uv]}

{a(ke1) cos[(k+D)a ] - b(k-1)cos[ (k-1)a ]}
(2.23)

where a, el 2unes {% k]) are the distinct
roots of

a sin[(k+1l)a] - b sin[(k-1)a] = 0 (2.24)

which lie in the subintervals

G v=1, 2,0, BD

and where [i] denotes the largest integer contained
in k/2. 2

E. H. Lloyd (1963) extended Moran's model, to
take into account serial correlation of the inputs.
Assuming that the sequence of inputs can be described
by a Markov chain, Lloyd redefined the "state" of the
system in terms of the values of the pair of variables
storage-input and introduced a bivariate transition
probability, namely the conditional probability that
the pair storage-input at time t assume specified
values, given the values of the pair storage-input at




time (t-1). With this device, the Markov property

is restored and methods similar to the ones used in
the univariate problem are applicable. The size of
the matrix involved increases drastically. Instead of
k+*1 states {0, 1, 2,..., k},”one has to consider
m(k+1l) redefined states with m being the number of
different possible values assumed by the input.

E. H. Lloyd and S. Odoom (1964) extended Moran's
nodel to take into account seasonality of inputs.
This has been accomplished simply by considering a set
of transition probability matrices, one for each sea-
son. A detailed analysis of the simple two seasons
model was given for illustration purposes.

Only contributions directly related to this paper
have been discussed. There is a large number of other
interesting works, and for a comprehensive view the
interested reader is referred to review papers by
N. U. Prabhu (1964), J. Gani (1969) and E. H. Lloyd
(1974a).

3. Deficit Analysis

Very little work has been done on deficit
analysis. To the knowledge of this writer, only two
papers deal specifically with the maximum accumulated
deficit, and both are 'practical" papers in the sense
that one presents an empirical treatment of actual
data and the other used the data generation method.

E. H. Hurst (1951), using his long term sequences
of natural phenomena, made an attempt to find the re-
lationship between the adjusted maximum accumulated
deficit (i.e., maximum accumulated deficit when the
draft is a percentage of the sample mean) and the ad-
justed range. His method of analysis consisted of
plotting observed values of the pair adjusted range--
adjusted maximum deficit, and fitting curves "of the
exponential and square-root forms: by simple regres-
sion techniques. The empirical formulae proposed

were:
log(DA/R*) = -0.11 - 0.88 (Z-B)/S (2.25)
(D/R%) = 0.91 - 0.89 Y(Z-B)/S (2.26)

where Z is the (sample) mean discharge, B is the

constant output, S is the sample standard deviation
of the natural discharge, and Rx and D; are the

adjusted range and the adjusted maximum accumulated

deficit, respectively. Hurst concluded that "as far
as closeness of fit is concerned, over the range of

observations, there is no significant difference be-
tween one type of curve and the other. At some fu-

ture time, it may perhaps be possible to decide that
one or the other has some theoretical justification,
but this has not so far been possible.”

M. B. Fiering (1965), using the data generation
method, investigated a wide range of possible data
combination characterized by several input populations
with different coefficients of skewness and serial
correlation, by several levels of regulation and by
record lengths typical in hydrologic studies. For
cach combination, either R; or D; was taken as the

storage capacity required, depending on whether =8
or I # B, respectively.

It is important to stress that in both works,
the mean adjusted range and the mean adjusted maximum
sccumulated deficit rather than the unadjusted ones
were taken as the storage capacity required, and in

opinion of this writer, it is not easy to justify
this criterion.

4. A Note on the Hurst Phenomenon

Hurst (1951) derived the asymptotic value of the
mean adjusted range of partial sums of independent
random variables with unit variance {Eq. (2.2)).

In order to verify this result experimentally,
Hurst generated 30 sequences of size 100 of indepen-
dent random variables, computed for each sequence the
statistic R;/S/ﬁ: where S% is the (biased) sample

variance, and obtained an average value for this sta-
tistic close to 1.25, thus indicating that the deri-
vation of Eq. (2.2) was probably correct.

Subsequently, in the analysis of data relative
to natural phenomena (meaning rainfall, discharge,
temperature, pressure, growth of tree rings, thick-
ness of layers of mud and sunspot numbers), Hurst
came to the conclusion that the mean rescaled range

(meaning R;/S) varies as nK, where K has mean
-

0.729 and variance 0.303, and consequently, that the
square-root law found before does not prevail for
natural phenomena.

The important feature to observe is that Hurst
used two different methods of analysis: in dealing
with generated random data, he assumed that

ERz/S) = a.n®®

(2.27)
and estimated the value of the parameter a (thus,
in effect, he imposed the square-root law); however,
in dealing with data of natural phenomena, he assumed
that

E(RY/S) = (n/Z)K (2.28)
or, equivalently,
K = log[(R*/S)]/log(n/2) (2.29)

To illustrate that the two methods of analysis
lead to different conclusions, it suffices to go back
to Hurst's own generated data (used to show that the
square-root law prevails for 'random events") and
apply Eq. (2.29). The conclusion is that the esti-
mated mean value of K is 0.64 and thus the square-
root law does not prevaill

However, the reasoning behind Eq. (2.28) is
sound: one would like to have R; =85 for n= 2,

independently of the value of K (it can be easily
verified that when the biased estimator for the wvari-
ance is used,

n
(X - o*
g2 o i=l s
n
then R; =S for n = 2). Another reason for Hurst's

proposal of Eq. (2.29) is that it seems to fit his
data well (certainly the indisputable fact is that his
data depart from Eq. (2.2)). Probably for this reason
the following estimator has not been used:



log(R*/S) - log(l.25)
K = & : (2.30)

log(n)

Interestingly enough, using Eq. (2.30), the mean value
of K' for Hurst's 690 cases of natural phenomena
turns out to be 0.57, still larger than 0.50, but much
smaller than 0.73. Furthermore, when Eq. (2.30) is
applied to Hurst's 30 sequences of generated data, the
mean value of K' is 0.50.

Once Eq. (2.29) gives the right result for n = 2
but leads to inconsistencies when applied to n = 100
(in the case of Hurst's generated data, for instance),
the obvious conclusion is that it is not reasonable
to assume that the relationship between the logarithm
of the rescaled range and log (n) is linear. The
reader may find it illustrative to plot values of
Iog[E(R;/S)] given by Eq. (2.18) against log (n) to

see that the relationship is not linear for small
values of n, and that even though the square-root law
holds for large values of n, the rescaled Tange be-
haves as higher powers of n, in a pre-asymptotic
sense. This argument (Hurst phenomenon as a simple
transient effect) was first presented by E. H. Lloyd
(1967), based on the analysis of Eq. (2.15) rather
than (2.18).

Exploring further the idea of transience, it was
natural to follow Feller's (1951) suggestion and to
study the mean adjusted range for dependent random
variables. N. Matalas and C. S. Huzzen (1967) simu-
lated 10,000 sequences of Gaussian-Markov processes
for each of several combinations of n (record
length) and p (lag one coefficient of correlation).
For each sequence, the coefficient K as defined by
Eq. (2.29) was computed. His conclusion was that in
general the results were similar to Hurst's, with the
mean value of K ranging from 0.58 to 0.87.

Since Hurst's basic argument was that the scuare-
root law apparently does not hold for geophysical data,
it was natural to look for possible explanations out-
side the Gaussian Markov framework. As mentioned be-
fore, P. A. P. Moran (1964) showed that the range of
partial sums of independent stable random variables

hehaves as nI/Y. D. C. Boes and J. D. Salas-La Cruz
(1973) showed that this is also the case for the ad-
justed range. However, it is important to note that
stably distributed random variables with parameter

1<y<2 have finite mean but infinite varia;

some hydrologists find it difficult to acc

hydrelogic processes have infinite varianc

point to stress is that in some cases one can acue,.
the idea of similarity of behavior between the ad-
justed range R; and the rescaled range R;/S. How-

ever, when the expectation of the sample variance does
not exist, one may be tempted to conclude that the ad-
justed range and the rescaled range behave in differ-
ent fashions. Therefore, it is this writer's opinion
that the reasoning with stable distributions cannot

be accepted as a candidate to explain the Hurst phe-
nomenon before the behavior of the rescaled range is
assessed.

Another attempt to explain the Hurst phenomenon
outside the Gaussian-Markov framework was made by

B. B. Mandelbrot and J. R. Wallis (1968, 1969a, 1969b).

They proposed an alternative generator of Hurst-like
sequences, called "fractional Gaussian noise," char-
acterized by a property called '"self-similarity."

This model assumes that geophysical processes have
"infinite memory" (meaning that the distant past
exerts small but nonnegligible influence in the
present), and some hydrologists find difficulties

in accepting this assumption (A. E. Scheidegger, 1970,
V. Klemes, 1974).

The other area explores as an alternative
explanation for the Hurst phenomenon is that of possi-
ble nonstationarity of geophysical time series. Hurst
(1957) proposed an interesting model, in which the
mean input suffers random finite jumps, randomly in
time. P. E. 0'Connell (1971) claimed Hurst-like prop-
erties for particular autoregressive integrated
moving-average (ARIMA) models. Recently, V. Klemes
(1974) elaborated further on Hurst's idea of random
jumps occurring randomly in time.

Later in this paper, departing from these
possible explanations (infinite memory, infinite
variance, or nonstationarity), the argument that
"'short memory" (meaning that the influence of the dis-
tant past in the present is negligible) models pre-
serve the so-called Hurst phenomenon will be presented
The argument will be original, but the reader should
note that the idea is old: it goes back to Feller's
(1951) conjecture, and it has been verified by
Matalas and Huzzen (1967), and by V. Klemes (1974),
using the data-generation method.



Chapter I
BACKGROUND MATERIAL

1. Markov Chains 0

In this section a summary of the theory of Markov
chains is presented. Although this topic is well-
known and can be found in basic text books, it is con-
venient to present it here for quick reference. A
very attractive presentation of the subject has been
made by E. H. Lloyd (1974), and in this section his
contribution is summarized.

1.1 Generalities. Considering the time structure of
a univariate discrete process {Yt}' two extreme cases

may arise: the situation when the random variables
YO’ Yl, Yz,... are all independent of each other (Eq.

(3.1)) and the situation in which the distribution of
the variables is influenced by all earlier observa-
tions (Eq. (3.2)).

PRV, = &, X, 5 %5, Yo g # Kyunoy Wy ¥)
= P[Y, = i)-P[Y, ) = J]-P[Y, , = Kl-...-P[Yy = W]
(3.1)
PIY, =1, Yo 1 =3, Yo o= keeey Yy = v, Y = W]
=PIV, = 4[Y, ) =Gy Yo = W]-PIY, = 5Y,,
=kyeeey Yy =w]-...-P[Y1 & v|Y0 = w]-P[Y, = v]

(3.2)

In Eq. (3.2), the expression P[Yr = s|C] denotes
the conditional probability the Yr. should take the

value s, given the condition C.

A model intermediate between (3.1) and (3.2), in
which the distribution of the value Yt is influenced

only by the previous k observations is called a k-
step Markov chain (Eq. (3.3)).

PIY, =dlY, ; =3, Y, o =keeoy Yo o =m Y, )
® fyenes YU = w]

= P[Y, = 1Y, # 3 Yoo = Reveas ¥y y =0)

(3.3)

Each value of k calls for its own methods of
analysis, which are similar to some extent to the
methods used for the case k = 1, which is the l-step
Markov chain, or simple Markov chain.

1.2 Simple Markov Chains.
chain, Eq. (3.2) becomes

For the simple Markov

P[Yt s i, Yt-l = ¥, Yt-2 ey Yl = v, Yo = w]
= PY, = i|Yt_1 » JYPLY, ;o let_z = k] PLY,
= v[Yo = W]-P[Y, = w]. (3.4)
The conditional probability P[Y_ = s|Y_ . = u]

is called a transition probability, ahd is sSﬁstimes

10

written in short notation as Py s’ indicating a
»

transition from the '"state" u to the '"state" s.
Because it is a conditional probability, it follows
that, for each fixed value of the conditioning vari-
able Y_,, E P[Yr = s|Yr_l = y] = i Bii 1, summed

over the conditioned variable Yr.

From (3.4), the marginal distribution of Yt can
be obtained as

P[Yt =i] = E ..v B P[Yt =i, Yt-l =13, rtaz
j W
R e Yl = v, Y0'= w]
- 14 §Y+a! i kY- -ql . =
§ e i ap(i,3)-q;_; Guk) . qp (v, w)P[Y, = ]
.

(3.5)

where qi(s,u) =p, . = P[Y = s|Y ul.

-1
The symbol q;(s,u) rather than pu % is used
’

to proportionate a more convenient matrix notation to
Eq. (3.5). Let €, denote a column vector with ele-

ments at{s} = P[Yt =s],s=0,1,..., and Q; a
square matrix in which the (i,j) entry is qé(i,j].

Then Eq. (3.5) can be written as

i T Qg Y Ry (5:6)

= |
& = Q
and, equivalently,

€ = Q; ‘B B8 S B S (3.7)

If the restriction of time homogeneity is imposed,
so that Qé = Q', for every t, Eqs. (3.6) ard (3.7)
become

(3.8)

and

(3.9)

"
o
m

€t

Whilst the distribution vectors € €1 = Q'

€yr €5 = Q'z " €gree. arTe in general different from
each other, there is a large and important subclass of

so-called ergodic Markov chains for which £, con-

verged to a unique limit & which is a probability
vector and which is independent of the initial state
of the system. Let the elements in this vector be de-
noted by e(r) = P[Yt = r].

In the ergodic case, LN
from (3.9) that

+ g, and thus it follows

(3.10)

e=Q e
or, equivalently,
Q -1)-e=0 (3.11)



where I stands for the identity matrix and 0 is a
vector with all elements equal to zero.

Equation (3.11) represents a system of linear
equations which, in conjunction with the condition

Le(r) =1
T

(3.12)

determines € uniquely.

1.3 Nonsimple Markov Chains. For the purposes of
this paper, a presentation of the 2-step Markov chain
will suffice. In this case, Eq. (3.2) becomes

PIY, = 4 &g =3 Yeog ks Y™ Ravini ¥y
= u, Yl = v, YO = w]
= E[¥, = i[Yt_l by X5 ™ k]'P[Yt_l
=il =k Y g=4]
o PLY, = ulYl =V, Yo = w]'P[Y; = v, Y, = w].
(3.13)

To use a technique similar to the one presented
for the simple Markov chain, the transition prob-
ability can be written as

L i|Yt_1 154 % k] = BLY, = 1,%

t-2 t-1
= J|Yt_1 =1 Yt~2 = k] = at[ijlik]-
The "marginal" distribution of the pair (Y_,Y I}
can be obtained by B
Py, =1, ¥, , =4} »EL...BP[Y =4, ¥, .
ket w
= Jseees Yy = w]
- i i.. I at(1;|3k)-at_1(jk|km)...a2(uv[vw)-p[yl
W
=V, YO = w] 4 {3.14}
Or, in matrix notation,
L R R TORE (3.15)
or, 6 =A 6 (3.16)

t t-1

where 6t
P[Yt =i, Y

is the vector with elements Gt(i,j] =

g = j], ordered as

T -
ﬁt Erd {Gttono); ‘sttu,l}:‘-‘l 6t(1’0),
§,(1,1),..., 6,(2,0), § (2,1)...},

the symbol T denoting the transpose of the vector.
The elements of the matrix Rt are at[ijljk), ar-

ranged as shown in the following example:

11

(G.k)

oo o o o *+ +» + 0 o o
02 |0 o o 0o 0 0 * +
gpWw = * € 4 o 9 @ € A
1 ]0 0 0 % + « g 0o 0
12 ]o o o o o 0 * »
20|+ « +« 0o 0o 0o o 2 o
2 o o
2|0 o0 0o 0o 0o o * = e

The asterisks indicate nonidentically zero
entries. For example, the entry *** is at{11|10).

L3
If the transition probabilities are not time
dependent, Eqs. (3.15) and (3.16) become, respectively,

(3.17)

and & =A- 8 o i R (3.18)
As in the case of the simple Markov chains, if

the transition matrix is ergodic, Gt will converge,

with increasing t, to a limit vector, which defines
the joint equilibrium distribution of the consecutive
pairs of variables. From this, the univariate lim-
iting vector can be obtained.

2 The Symmetric Random Walk and the Method of
Images

The purpose of this section is to present the
classical method of images and to apply it in the der-
ivation of expressions that will be used later in this
paper.

2.1 Generalities. Consider the sequence of
independent random variables {xi; i=1,2,...} such

that P[Xi = +1] = p, P[X, = -1] =q and p + q = 1.

The distributicn of the sum SIn = XI ¥ Xy ¥ owen ¥

Xm(m =1,2,...) is given by
: p(m+s}f2 : q(m~5]/2
(3.19)

P[Sm %] = mc(mfs]/Z

where

m!

C
n(m+s)/2 = Tiws)7211 [(a=5)/2]]

and

s = -m, -m+2, -m+4,,,., m-4, m-2, m.
This process is called a simple random walk.

For the symmetric random walk, p = q =% and
Eq. (3.19) reduces to

P[s, = s] = 603 (3.20)

mc(m+5)/2

e i B B




The X.'s
distributed and

are independent and identically
thus the following relationship holds:

PIS in * 5|Sm =u] = PIX .1 * fm+2 Yoy WX = eyl
- = = - n
= P[Sn = s-u] ﬁc{ms_l“”2 {1/2y" - (3.21)

2.2 The One-Boundary Problem. The ideal coin-tossing
will be used to illustrate the different cases pre-
sented in this section, following W. Feller (1970).

Consider a player "betting against the house";
assume that the "house'" is infinitely rich, but the
player has a finite initial capital C. The game is
"head and tails" and the player loses one dollar each
time the outcome is, say, a head. Thus, a head stands
for a -1 and a tail stands for a +1, from the
player's viewpoint.

One of the questions that arises is what is the
probability that the player will have a final capital
S at the end of n coin tosses. To answer this
question one has to have in mind that the player may
very well go broke before the n'th coin toss, in which
case the game would not continue. The solution 1is
easily found using a geometric reasoning, which is the
essence of the so-called method of images.

Referring to Fig. 3.1, U' is the point with
coordinates (0,-u) and it is the image of point
U(0.+u) with respect to the line y = 0. The geo-
the number of paths
to S(n,+s) which touch or cross
equals the number of all paths from
S(n,+s).

metric reasoning is as follows:
going from U(0,+u)
the line y =0
u'(0,-u) to

S

p!
J

11| vy
\A/ en=2n-ln T

Fig, 3.1, The essence of the method of images.
Consequently, the number of paths from U to §

which do not cross or touch the axis is the difference
between the number of all paths from U to S and
the number of all paths from U' to S. The prob-
ability of such an event is obtained by dividing this
difference between the number of paths by 27 (total
number of n-step paths starting in U).

Applying Eq. [3.21], the probability that the
player will have a final capital S = s at the end of
the n-th coin toss, given that the initial capital U
was u, is

n
-] )
P[s, (1/2)

s-u] - P[Sn = stu] =

nC[n¢s—u]f2 ’

(1/2)" (3.22)

- nc(n+s+u)f2 ’
Or, introducing an obvious notation:
P"[S[1 = s+u] =

s-u] - P[Sn = vnfu,s) - vn(—u,s).

A boundary such as y = 0 in the above example
is called an absorbing boundary, in the sense that,
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once it is reached, the "system'" continues in this
"state' with probability one (the player is broke and
the game ends).

Now suppose that the house is generous enough not
to collect the player's last dollar. Thus, when the
player has only one dollar, the '"system" continues in
"state" 1 with probability ) (when the outcome is a
head) and goes to "state'' 2 with probability % (when
the outcome is a tail).

It can be shown that the probability that the
player will have a final capital S = s at the end
of the n-th coin toss, given the initial capital U = u
and given that the house does not charge him for his
last dollar is

P{Sn =

s-u]-rP[Sn = s+u-1] = vn(u,s} + vn(-u+1,5)

where P[Sn = s-u] is given by Eq. (3.21).

This is tantamount to adding the number of all
paths from U to S to the number of gll paths from
u', to S, where U" has coordinates (0,~u+l) and
it is the image of point U with respect to the line
y =% (see Fig. 3.2).
in the above

A boundary such as the axis y =1

example is called a reflecting boundary, in the sense
that it does not allow the axis
to be reached.

y =0 or ("state" 0

Fig. 3.2. Reflecting boundary for the endless game.
2.3 The Two-Boundary Problem. Now consider the case
of two players with finite capitals. The game ends
when one of them goes broke, and thus the problem in-
volves two absorbing boundaries.

Referring to Fig. 3.3, one may ask what is the
nubmer of paths from A to B which do not cross or
touch either boundary.

(SN2 = =SSR =) 2= == H

w=o/} .

A

!=0‘~\\

=== =E Sl =S = == === 1]

Fig. 3.3. Absorbing boundaries for the finite
duration game between two players.
Denote by A(l) the image of point A with

y =0, by al®

Al
point A(l) with respect to the axis y = a, by A(s'

respect to the axis the image of



A@

the image of point with respect to the axis

y = 0, and so on. Similarly, denote by AElJ the
image of point A with respect to the axis y = a, by

NE)
*

axis y =0, by AES] the image of point AEZ) with
respect to the axis y = a, and so on.

the image of point AEIJ with respect to the

The solution to the problem is given by
considering the number of <ll paths going from A to
B, subtracting the number of all paths going from

A ang AEI) to B, adding the number of all paths

going from A(z) and AEZ) to B, subtracting the
(3)

number of gll paths going from R[S) and A
B, and so on.

to

Considering the case in which the players do not
collect each other's last dollar, the problem involves
two reflecting boundaries (in such a way that no
player goes broke).

Referring to Fig. 3.4, the probability of being
at B, after the n-th play, given that the process
started at A, is found by considering the repeated
images as before, now with respect to the axes
y=a-=-1/2 and y = 1/2, and by adding all proba-
bilities involved (recall that in the previous case
addition and subtraction were performed alternately).

HSslishsli= == irspis === =11zl
yza-12—7; ~ 8

,=u2_‘1
IxISii=n=n=<[I=f< = Isti=0=i =<l =

Fig. 3.4. Reflecting boundaries for the endless game
between two players.

The case of one absorbing and one reflecting
boundary can be treated similarly. A more careful
analysis of the changes of sign is necessary in this
case.

It is converient to homogenize notation before
giving explicit results for each case of the two-
boundary problem. In Section 1 the symbol q;(s,u}

was introduced to denote the one-step transition prob-
ability from state u to state s. This would be

better defined by qil)(s,u), so that in general
qE"}(s.u) will denote the n-step transition proba-
bility from state u to state s. The subscript t
can be dropped whenever time-homogeneity is assumed,
as in the problem in this section. For convenience,
the state space considered will be {0,1,2,...k,k+1}.

Two absorbing boundaries

The random walk in this case is a Markov chain
with the following one-step transition matrix Q':
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0 1 2 k-1 k k+1
81 & e 0 s 0 0 0
1 0 0 2 s 0 0 0
2| 0 Z 0 e 0 0 0

3 0 I 7 SR 0 0 0

. . . ]

k-2 0 0 0 seenas 1/2 0 0
k-1 0 0 0 v 0 1/2 0
k 0 0 B s o X2 0 0
k+1 0 0 4 R 0 1/2 1

« The probability of going from state u=1,

2,..., k tostate s =1, 2,..., k in n steps with-

out touching or crossing the boundaries will be de-

noted by q{n](s,u) and it is the (s,u) entry in the
n+th power of the following matrix:

0 We B  saiacs 0 0 0

12 0 X2 weeses 0 0 0

6 W2 0 e 0 0 0
Q=

0 0 0 v 0o 1z o0

0 0 0  aewens 1/2 0 1/2

0 0 0 s 0o 1/2 o0

which is obtained from matrix Q' simply by deleting
the first and the last row and column.

Using the method of images as described, it is
found that

ja-na
n
a™(s,u) = " [v, (23 (ke1)+u,5) - v (2] (ke1)-u,8) ]
JEn (3.23)
where vn[t,r} - P[Sn = r-t] 1is given by Eq. (3.21),
and where only finitely many nonzero terms exist.

Finally, the relationship between the n.th powers
of the matrices Q and Q' is the following:

1 !;1 0
e = | o @ 9
0 “E 1

- =




where 0 is a column vector with all elements equal to

T

zero and un and ZE are row vectors (T stands for

transposed, 4 stands for absorption in the upper
boundary and £ stands for the absorption in the
lower boundary).

The vectors un and En are given by

R T L Lt IR
where

@ =[0...0 0 12,
and

A R e R
where

g=0/2 0 0...0]

Two reflecting boundaries

The matrix Q' in this case is

0 1 2 k-1 k k+1

0 62 32 M| et 0 0 0

1 102 @ WLZ  nasies 0 0 0

2 0 Aj2 0 e 0 0 0
k-1 0 0 1 T 0 1/2 0
k 0 0 0 ceeas 1/2 0 1/2
k+1 0 0 B s 0 1/2  1/2

and there is no advantage in defining the matrix Q.

q' m[s,u)
of the matrix
it is given by

is the (s,u) entry in the n-th power
Q', and applying the method of images,

j=+m
L [v_ (2i(ke1)+u,s) + v (2] (k+1)-u+l,s)]
=== (3.24)

'™ (s,u) =

where, as before, vn(t,r} = P[Sn = r-t] is given by

q. (3.21), and where only finitely many nonzero
terms exist.

One_absorbing and one reflecting boundary

In this case, the matrix Q' is shown below, for
the case when the absorbing state is state 0. The
matrix Q can be obtained by deleting the first row
and the first column (recall that in the case of the
two absorbing boundaries, the first and the last rows
and columns were deleted).
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0 1 2 k-1 k K

0 1 1/2 0 e 0 0 {

1 0 0 2 e . 0 0 l

2 0 1/2 0 s 0 0 (

3 0 0 B2 e 0 0 (

k-1 0 0 ¢ 0 1/2 (
k 0 0 0 i E 1/2 0 1,

k+1 0 0 0 wasnes 0 1/2 1,

q{n}[s,u) is the (s,u) entry in the n.th
power of the matrix Q and its value follows from t}
application of the method of images:

j=+om

J .
W = (1 - v @iKes/2)vu,9)

j:»o:\

- v, (25 (k+3/s)-u,s)] (3-25)

where, once more, vn[t,r) = P[Sn = r-t] is givem by

Eq. (3.21) and where oniy finitely many nonzero terms
exist.

The relationship between the n-th powers of the

matrices Q and Q' is
1
n n
r =
Q= n
0 Q
where 0 1is a column vector with all clements equal

to zero and

£h = (1+Q+Q2+Q3+,__+Qn‘1) § £1
31" =[1/2 0 0 ... 0]

where, as usual, T stands for '"transpose' and the
symbol £ 1is related to absorption in the lower
boundary. Later in this paper, the matrices Q' an
Q for the case of one absorbing and one reflecting
boundary will be denoted by P' and P, to avoid
confusion with the case of two absorbing boundaries



and m

(i.e., input minus output) at discrete time t
reservoir of size (k+1), such that P(Xt =1i) = P;-

Clearly, X

more, let this reservoir be such that when full, it
continues full with probability one, and when empty,
it continues empty with probability one.

RANGE ANALYSIS FOR INDEPE

their (nonpositive) minimum, and R“ is the range.

Chapter IV
NDENT, IDENTICALLY DISTRIBUTED INPUTS

T 4T
transpose, and where u , £

In this section, the joint distribution of Mn

is initially discussed.

It is convenient to approach the problem using a L
terminology similar to Moran's in the analysis of
finite reservoir. Let Xt

denote the net input

¢ can assume negative vlaues.

Then the amount of water stored follows a simple q=
homogeneous Markov chain with state space

{0,1,2,
and one-step transition matrix Q'

at the top of the next column.

The elements in the first and last rows are to
be interpreted as

U TPy TPy YRyt e

From this discussion oy
the diStribution of the range follows directly.

into a P, Py P_,

Further-

as shown

’ (j = 1)2,--.

T Mg Y geiiiy Wyl

[&

i gk
the st

Pikes
Poy Py By Pojed

Poz Pup Py Pok+s

Pik-3 Pex-5 = Py
Pik-2 Pik-4 -+ Py

Pik-3 o0 Py

k) Prk-1
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2

30 e 2,1

Pk+2
P_gs3

P_x+4

The concept of the range of .partial sums of -
random variables is of great importance in hydrology. \k/ i = 3 RV ol et . kil
Surprisingly, only a few results are known, such as O3 kg Ry R e Rl Rl By 0
the asymptotic distribution (Feller, 1951), mean range ¢ 1 0
(Spitzer, 1956, and others) and the exact distribution Pq P1 P_5 Poxes Pogez Pogur -
obtained numerically for very small values of n 2 o ;
ined P P P Posoo Piee By 0
(Yevjevich, 1965). w9 -1 ~ket Toked Toke2
) )RRy Ry By Pyes Popeg Popez O
In this chapter, a general approach to the exact
distribution of the range is described. Starting with
discrete random variables, the formulation is extended e i E ¥ .
in the sequel to continuous random variables. Evalua- N
tion of moments follows immediately from the procedure k-2l 0 p P P P p p 0
to be described and applications are shown for the *hes Tighed Takea o -1 -2
case of some well known probability distributions. k=1l 0 P2 Pupez Popes e Py Py Py 0
Discrete Net Inputs K10 Py Pag P v P By Py 0
Consider the sequence of independent, identically A0 My Y Yz v Mg Y +1 :
distributed discrete random variables {xt; t=1,
., n} and v .
and
§, =X +X, % ...+ X;3t=l, 2,..., M
t 1 2 t’ & e L .=p.+p ., * ¥ givy 0 = Li20005K)s
- p_J p-]-l F_j_2 s (J
Moo= max (0, Sl, 52,..., Sn} ; o
The matrix Q' can be partitioned as
mn = min (0, 51’ Sz""' Sn) 1 £T 0
Rn = Mn B mn : Mn & lmnl Q! = 0 Q 0
T
As defined previously, {St} are called partial 0 = 1 423
sums, Mn is their (nomnnegative) maximum, m is where 0 is a column vector of size k with all
elements equal to zero, the symbol T stands for

and Q are as follows:

(4.3)

Pog+l

P k+2

P_x+3

(4.4)

¥
|
i
i
1
i

1




The n-step transition matrix is then

1 £T-(I+Q+Q2+_..+Qn-l]
Q"= o i (4.6)
0 ulereqeQ®e... 4"y
where I is the identity matrix.

; il i
The matrix - Q  will be called the n-step
"restricted" transition matrix for obvious reasons.

1.1 Joint Distribution of M and m . Keeping the

L)
same notation presented in Chapter III, q(n)(s,u) is

the (s,u) entry in the matrix Qn, and it denotes
the probability of a transition from the state

u=1,2,...,k to the state s = 1,2,..,,k, without
passing through the states zero or (k+1).
s=k
Then L q(n){s,u] denotes the probability
5=1

that the system does not reach the boundaries (states
zero and k+1) in the first n steps, given the ini-
tial state u. But this is clearly the joint proba-
bility PM < k-u, }mn| < u-1), where the symbol

]mn] stands for the absolute value of m .

It is convenient to use the index k to
s=k
I qén)
s5=1

ments of the u-th column in the n-th power of the
matrix Q, of eize k.

emphasize that (s,u) 1is the sum of all ele-

The probability mass function P(M = k-u, |mn[ =

u-1) is given by
PM = k-u, |m | =u-1) =PM =k-u, Im | < u-1)
- PM = k-u, Imh| < u-2)
but
PM_ = k-u, [mn[ <u-1) = P(M_ < k-u, Imnl < u-1)
- P(M_ < k-u-1, lmn| < u-1)
and
PM = k-u, |m | <u-2) =PM <k-u, [mn| <u-2)
- P(M_ < k-u-l, |mn1 < u-2).
and thus
P{Mn = k-u, |mn| = u-1) = P(Mrl < k-u, Imhl < u-1)

P(M <k-u-1, Imnl

| A

u-1) -P(M_ < k-u,|mn| < u-2)

+*

PM < k-u-1, |m | <u-2)

where all the terms in the right hand side can be
written as sums of elements of particular columns of
n-step "restricted" transition matrices of sizes
k,k-1 and k-2:
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k
qk(n]{S.U]

PM_ = k-u, |mn| = u-1) = I
5=1
s=k-1
b Z Q£fi [S,U)
s=1
s=k-1 s=k-2
(n) g (n) _
E A1 (s,u-1) + ‘f L (s,u-1)
= s=1
(4.7)
Notice that (n) - (n)
! 9_3 (s,u-1) and UY_> (s,u-1) are

different, because they are entries in matrices of
different sizes. Notice also that once the joint dis-
tribution of Mn and mn is known, their marginal

distributions can be obtained easily.
Although the underlying concepts are very simple,
their exposition may be obscured by the unfortunately

complicated notation. To help clarify the procedure
ou;lined, a simple example is given.

Example 4.1

The joint distribution of Mn and m will be

found in the case n = 3, for the following binomially

distributed net input:
- 4 .
P(Xt =1i) = 4C(2+i) (1/2) " for i = -2,-1,0,1,2
P(xt = i) = 0 otherwise.
The symbol C stands for ''combination." For

_ 4!
2~ 2121
and var[xt) = 1.

instance, 4C = 6. Notice that E(Kt) =0

Only two particular values are evaluated in
detail. The procedure to find all other probability
masses is exactly the same and the final results are
shown in Table 4.1.

To find, say, P(M; =1, |m3| = 2), Eq. (4.7)
furnishes

5=4 5=3
3
Py = 1, [ng| = 2) = ¥ 5,9 =z o (5,9
s=3 .. s=2 X
-5 w5 o (4.8)
s=1 s=1

The one-step "restricted" transition matrix

(Eq. (4.5)) in this cas~ is
6/16 4/16| 1/16 0 0 0
. fﬁfﬁ___§£564m_?flﬁ 1/16 0 0
1/16 4!16| 6/16 4/16 1/16 0
0 lf16| 4/16  6/16 4/16 1/16
0 0 | 1716 4/16 6/16 4/16
0 0 0 1/16  4/16 6/16
= . —



A matrix of size 6 was shown for convenience.
Actually only matrices of sizes 2, 3, and 4 are used
at this point. The dotted line indicates how to ob-

tain the matrix of size 2 from the given matrix. Sim-
ilarly matrices of sizes 3 and 4 can be defined.
The terms in the right hand side of Eq. (4.8)
are
6/16 4/16 1/16 0 ] > [0
5= (3} 4/16 6/16 4/16 1/16 0
: (s,3) = [1111]
s=] 1/16 4/16 6/16 4/16 1
0 1/16 4/16 6/16 0
= 2755/4096
pui 6/16 4/16 1/16] ° [0
L
i qés}(s,ﬂ = [111] 4/16 6/16 4/16 0
1/16 4/16 6/16 _}_
= 1619/4096
[6/16 4/16 1716 3 [0
3
: a$¥(s,2) = 111] [4/16 6/16 4716 1
s=
[1/16  4/16 6/16 [ 0]
= 2096/4096
3
/16 4/16 0
% qzm(s,z] =111 |a16 e/16 | |n
5=
= 1000/4096
and thus
P(My = 1, |m3| = 2) = (2755 - 1619
- 2096 + 1000)/4096 = 40/4096
For illustration, another probability is
evaluated:
5=6 s=5
PM4g = 3u0myl = 2) = 7 ol (5,3 - £ al¥(s,3)
s=1 5=1
s=4
£ a5, ¢+ 1 qPs,2)
s=1 s=1
where —— —_— -
641000 0
464100 0
s5=6 146410 1
r 9,3 - (7)°-(111111] -2
s=1 014641 0
001464 0
[0 001 46 Lo
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64100] o
46410| |0
(3} an _ bl _ 3416
551 457 (s,3) = G -(1) [14641] B = 5EE
01464| o
00146 o
64100 67
464a10| |2
ey 3011
sfl (°)(s 2) = (163 ) 14641 fof = yme
01464 |o
00146| |0
6 4170] 2[0]
4641 1
(3) 1.3 2755
Y a7 (s,2) = 9. [1111) = 32
i 4 16 T o| = 0%
0146 0]
and thus
PM; = 3 ]m3| = 2) = (3672-3416-3011+2755)/4096 = 0.

In a similar fashion, all values shown in

Table 4.1 can be easily evaluated.

TABLE 4.1 JOINT DISTRIBUTION OF MS AND m3 FOR A
PARTICULAR BINOMIAL NET INPUT*

E

Mn 0 1 2 3 4 5 6 7
Im |

0 216 784 619 252 71 12 1 0
1 784 312 40 4 0 0 0 0
2 619 40 2 0 0 0o 0 o
3 252 4 0 0 0 0 0 0
4 71 0 0 0 0 0 0 0
5 12 0 0 0 0 0o 0 0
6 1 0 0 0 0 0o 0 o0
7 0 0 0 0 0 0 0 0

*Entries in the table must be divided by 4096

1.2 Distribution of the Range.
distribution of M~ and [mn[

distribution of their sum follows directly:

u=k
PR, = k-1) = £ PR =k-I, |mn| = u-
u=1
u=k
= I PM_ = k-u, Imnl = u-1)
u=1

Now that the joint
has been found, the

1)



because

PM_ = ku, |m | = u-1) = P4+ |m |
= k-1, ]mnl:“ u-1)

= P(R = k-1, ]m“] = u-1)

Using Eq. (4.7),
usk fs=k s=k-1
PR = k-1) = I ( t ¢™ - & o™ (s
» usl \g=1 K g1 K-l
s=k-1 s=k-2
poqM (sl s 2 q") (s.u-1)
s=1 s=1
or
us=k s=k (n)
PR =k-1)= & £ q. (s,u)
n k
u=] s=1
u=k-1 s=k-1
-1 1 q™ sw
u=1 s5=1
u=k s=k-1
« i 2 qéfi (s,u-1)
u=2 s=]1
u=k-1 s=k-2
+ L L qéf; (s,u-1)
u=2 s=1
or, finally,
u=k s=k
(n)
PR =k-1)= £ & g™ (s,u)
n u=1 s=1 k
u=k-1 s=k-1 )
-2 I z qéfl (s.u)
u=1 s=1
u=k-2 s=k-2
(n)
+ I E g (s,u)
u=1 s=] k-2

where special attention should be paid to the fact
that the adjustment in the values of u in the above
summations is valid.

u=j s=j (
Clearly . I gq;

u=l s=1 2
elements in an n-step "restricted” transition matrix
of size j. Using an obvious notation,

(n) (n)
k-1 M2

n) (s,u) is the sum of all

_, M)
_]\k

P[Rn = k-1) = 2\

or equivalently,

. (n)
- Ak+1 - 2Ak

is understood to be zero for j

(n)
PR = k) % 2005 (4.9)

3 (M)

A
(=]

where

A simple example is now given for illustration
purposes.
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Example 4.2

The distribution of the range of partial sums
will be found in the case n = 3, for the same net
input of Example 4.1:

From Table 4.1, it is obvious that

P{R3 = 0) = 216/4096
P(R3 = 1) = (784 + 784)/4096 = 1568/4096
P(R3 = 2) = (619 + 312 + 619)/4096 = 1550/4096
P(R3 = 3) = (252 + 40 + 40 + 252)/4096 = 584/4096
P(RS =4) = (71 + 4 + 2 + 4 + 71)/4096 = 152/4096
P(Ry = 5) = (12 + 12)/4096 = 24/4096
P(R3 =6) = (1 + 1)/4096 = 2/4096
P(Ry 2 7) =0
Equation (4.9) is used to verify some of these
results. For instance, 3
6 4 1 0 1
1.3 4 6 4 1 1
PR, =3)= (=" [1111]
3 16 1 4 6 4 1
0 1 4 6 1
o 3
6 4 1 1
1.5
=2 G2"[111]
16 4 6 4 1
1 4 6 1
3
1.5 r
M RV 4] 1]
4 6] L1
. 9252 2_5334 " 2000 _ 584
© 4096 4096 ~ 4096 4096
and 3
PRy = 1) = (> [11] [" "} [1]
4 6 1
6.3 _ 2000 216 - 1568
2+ (750" * 0= 2006 - 2 * 7006 * © " 2096
and, of course,
6,3 . 216
PRy = 0) = (75)° -2+ 0+ 0=

Although the above example was given for
independent and symmetric net input with zero expec-
tation, Eq. (4.9) holds in general. As a matter of
fact, it holds even for dependent inputs, but in this
case the n-step transition matrix is not simply the
n-th power of the one-step transition matrix (see
Chapter III, Section 1.3).

Using Eq. (4.9), the cumulative distribution
function (c.d.f.) of the range can be readily obtained
as



e ———

P(R, <k) = P(R; = 0) + P(R, = 1) + P(Ry = 2)

+

e * PR =K)

xg“) " {Agn] . 21{“3) + (Aé“} ) 215"3

. J\{“)) PR (xéfi 5 2;\&“3 v ;{fi)

Y xé“} : (4.10)

k+l ~

Thus it is clear that there exists a value K
sufficiently large so that P[Rn =K) =0 and

PR <K) = Ag} - .\IE“) =1

or equivalently,

34 wreal® (4.11)

The m-th moment of the range is given by

ERD = PR =1) + 2" - PR_= 2)

& 8™ PR, = 3) + ...

For m = 1, the expectation of the range is

ER) =PR =1)+2 PR =2)+3 PR =3)+...

or, using a large value K such that P(Rn =K) =0
and P(Rn <K) =1,

E[Rn) = P(Rn= 1) + 2 - P(R]1 =2) +3 P{Rn = 3)
+ i+ K -?{Rn = K)

‘Using Eq. (4.9), the mean range simplifies to
ER) = K™ - (k1) AW

(n) (n)
But, from Eq. (4.11), 1K+1 =1+ AK and thus

(n)
BR) =K - A2 . (4.12)
Similarly, the second moment of the range is

2
E(Rn)

P(Rn =1) + 4- P(Rn = 2)

9- P{Rn s 5 [ e KZ

+

“PR =K)
(n) , 5, , , (n)
=2\, 2, 25

i wapm) o gl _ (n)
cee H 20 4 KT - (2K - 1) A

where Eqs. (4.9) and (4.11) have been used.

After some elementary manipulations, the second
moment of the range can be rewritten as
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K-1
L

2
ERY) = ER ) + 2 B

(ER) - (k - A{™)) (4.13)

Some useful relationships can now be derived.
The relationship between Q'n and Q“ has been

shown in Eq. (4.6). But Q'" is a transition matrix
and thus the elements of each column add to unity.

Consequently, the sum of all elements in Q'rII is
equal to its size, namely, k+2, and the following re-
lationship holds:

LTS R I £ T 1

o 27 (I+Q+ Q2 £ Q““) L=k
is a column vector of size k with all
(n)
g e

Using the index k to emphasize that the vectors
and matrices involved have size k, one has
-

where 1

elements equal to 1, and lTin is clearly A

W k- BT Qe G L

(4.14)

Making k = K (large) in Eq. (4.14), and using
Eq. (4.12),

ER) =K =A™ w (f + £3(1 ¢ Q * .00+ QL

or, equivalently,

ER) - ER ) = [u: " z:

-1

) Q; 1. (4.15)
Equation (4.15) indicates that it is easier to

study the difference between consecutive values of the

mean range than to study the mean range itself. This

conclusion is apparent also from Spitzer's result
(1956).

For symmetric inputs with zero expectation
Eq. (4.15) simplifies to

1 T A=l T .n-1
ER) -E(R ) =2u Q 1,24 Q" 1,. (4.16)

Using Eqs. (4.13) and (4.14), similar results can
be found for the second moment:

K-1
2 2 T ,T,.n-1 T ,T, ~n-1
E(Rn}~E[Rn_l} = (u.Ka-ZK]QK 1K+2 kf}{(ux+£K] QK lx
- et 1, (4.17)
and for symmetric inputs with zero expectation
2 2 T ,n-1
E(Rn) - E[Rn-l) B 21K QK 1y
k=K-1
T n-1 T .n-1
v PG RG]
(4.18)

1.3 Range Analysis for the Random Walk Process. In
this particular case, the net input xt is such that




P(Xy = 1) % 1/2 (i==1, +1)

and thus,

E(xt) = 0, and var(xt) =1 .

Some interesting results can be derived to be
used later in this paper.

The one-step 'restricted" transition matrix in
this case is

[0 12 o ... o o o |
/2 0 32w e (V] 0 0
o 12 0 ... O0 0 0
Q= . % < 5 « p
0 0 0o ... 0 1/2 0
0 0 9 +sai Ve B 3z

0 0 0 &% G 0 /2 0

and the n-step 'restricted" transition matrix can be
found by the method of images, as shown in Chapter
I1I. Thus, the (s,u) entry in the n‘th power of the
k by k matrix Q is

j=doo
{slu) s L
j:—m

(n)

e {vn[Zj(k+1) + u,s]

- vn[Zj(k+l} - u,s]} (4.19)

where

N i no_ ; n
Vn(r’t)' nc(n+r-t)/2 (1/2) nc[n+t-r]/2 Q/72)" .

The probability distribution function of Rrl is

= g = o)l g (n)
PR, = k) = A1 = 2407 + Ay
vhere
u=k s=k
Ainl = [ I q&n) (s,u)
u=1l s=1
u=k s=k j=+=
= I I L (v, [2j(k+l) + u,s]
. n
u=]l s=1 j=-=
LR [2i(k + 1) - u,s]}
; (n) (m) _. . .
with lk+1 and Ak-l similarly defined.

To find the mean value of the range, Eq. (4.16),
slightly modified, can be used:

T .n
E(Rn+1) - E(Rn] =2 £K QK ;_K .

Recalling that Z: = [1/200 ... 0 0], it follows
that [E{Rn+1] - E(RnJ] is simply the sum of all

clements in the first row of the matrix QE. But the

matrix is symmetric and thus the first row is equal
to the first column and then

s=K (n)
ER ) - ER) = 521 g~ (s,1) (4.20)
s=k
For general k, 2 Z: Q: }_k= pX qén}(s.l) can
be found using Eq. (4.19): s=1
s=k (n) s=k j=4ew
2 4 (s,1) = L L {vn [23(k + 1) » 1,3]
s=1 5=1 j=-@
=¥ [2j(k + 1) - 1,s]}
=+m
= I v [2i(k + 1) +1,1]
j:-n
Y [2i(k » 1) +:1,2)
- vy [2i(k + 1) - 1, k-1]
-~ v, [2§(k + 1) - 1,k]} (4.21)
In particular, when k = K (recall that K is

a very large number), it follows from the expression
defining vn[r,t) that the only nonzero values in

Eq. (4.21) are vn[zj(K+l} +1,1] and vn[Zj(K+l} +

1,2] for the particular value j = 0. Thus,
Eq. (4.20) becomes
ER ) - E(R) = v (1,1) + v (1,2)

/)" - Lnt72 /2"
(4.22)

- ncn/Z

where only one of the terms at the right hand side is
nonzero, depending upon n being odd or even.

Similarly, to find the second moment of the
range, Eq. (4.18), slightly modified, can be used:

2 2 gl all
E{Rn+1} - E{Rn) = ZZK QK-LK

where Zfz Q; 1, is given by Eq. (4.21) and

Zzz QE 1x has been shown to equal ncn/Z 2"
L nc[n-l]/itllz)n = Yphald vn(l,Z}.
Thus,

2
E(Rn+1]

2 -
E(Rn] e vn(l,l} * vn(1,2]
k=K-1
2 kzl {vn(l,lj # vn(l.Z)

+

(4.23)

+
IE [vn[Zj(k+1J # 1;1) # Vn(Zj(k+1) + 1,2)

v, (23 (k1) - 1, k-1) - v (2j(k+1) - 1, K]}



n n
where v (r,t) = nc{n+r&t)f2(1/2] = nc(not-rjfztlfz)'

Equations (4.22) and (4.23), used recursively, furnish
the mean range and the second moment of the range.

Table 4.2 summarizes the values of ER ), E(Ri) and
var(Rn] for n=1,2,..., 100.

Taking into account that the random walk process
is the simplest possible discrete input, it should be
clear by now that to obtain results explicitly (es-
pecially the second moment of the range) is not an
easy task. Even when such results are found, as it
was just done for the random walk prccess, final
equations may be so complicated that one would be
better off using directly the more general results
(Eq. (4.9) for the distribution of the range, and Eqs.
(4.15) and (4.17) for the first two moments), solving
the problem numerically.

1.4 Closing remarks. In this section, a general
approach was described to obtained the joint distribu-
tion of the maximum and minimum of partial sums of
discrete, identically distributed, independent random
variables (Eq. (4.7)). With minor modifications, it
will be shown that the approach holds for dependent
random variables as well.

From the joint distribution of Mn and mo the
distribution of the range (and consequently, its mo-
ments) was found (Eqs. (4.19), (4.15) and (4.17)).

The approach described was applied to the simplest
possible input, to illustrate that the usefulness of
some results in closed form may be questionable.

A final remark can be made, having to do with the
interpretation of the i‘th element (i = 1,2,..., k)

TABLE 4.2 MOMENTS OF THE RANGE FOR THE RANDOM WALK PROCESS
n E(R) E(R%) VARR)) . ms E(R) ER?) VAR(R )
1 1.0000 1.0000  0.0000 51 10.4521 120.5936 11.3479
2 1.5000 2.5000 0.2500 52 10,5622 123.1363 11.5766
3 2.0000 4.5000  0.5000 53 10.6723 125.6982  11.8002
4 2.3750 6.3750  0.7344 54 10.7804 128.2453 12.0288
5 2.7500 8.5000  0.9375 55 10.8885 130.8109 12.2524
6  3.0625  10.5625  1.1836 56 10.9946 133.3622 12.4810
7  3.3750 12.7812  1.3906 57 11.1007 135.9313 12.7047
8  3.6484 14,9453  1.6342 58 11,2051 138.4866 12.9331
9  3.9219  17.2266  1.8455 59 11.3094 141.0590 13.1570
10 4.1680 19,4570  2.0851 60 11.4120 143.6181  13.3853
11  4.4141  21.7832  2.2993 61 11.5145 146.1938 13.6092
12 4.6396  24.0625  2.5362 62 11.6155 148.7564 13.8375
13 4.8652  26.4229  2.7523 63 11.7164 151.3351 14.0615
14  5.0747 28.7402  2.9876 64 11.8157 153.9012  14.2897
15  5.2842  31.1277  3.2051 65 11.9151 156.4828 14.5137
16  5.4806  33.4758  3.4393 66 12.0129 159.0521 14.7419
17  5.6769  35.8854  3.6578 67 12.1108 161.6365 14.9660
18  5.8624  38.2590  3.8011 68 12.2072 164.2089  15.1941
19  6.0479  40.6872  4.1103 69 12.3036 166.7960 15.4182
20 6.2241 43,0822  4.3430 70 12.3986 169.3713  15.6463
21  6.4003  45.5264  4.5629 71 12.4936 171.9609 15.8705
22 6.5685  47.9397  4.7950 72 12,5873 174.5391  16.0985
23 6.7367  50.3978  5.0153 73  12.6810 177.1312 16.3227
24 6.8978  52.8271  5.2470 74 12.7735 179.7121 16.5506
25  7.0590  55.2974  5.4678 75 12.8659 182.3065 16.7749
26 7.2140 57.7407 5.6990 76 12.9571 184.8901 17.0028
27 7.3690  60.2219  5.9202 77 13.0484 187.4867 17.2272
28 7.5184  62.6777  6.1510 78 13.1384 190.0728 17.4550
29  7.6679  65.1687  6.3725 79 13,2285 192.6716 17.6794
30 7.8123 67.6356 6.6031 80 13.3174 195.2601 17.9072
31  7.9568  70.1355  6.8249 81 13.4063 197.8610 18.1317
32 8.0967  72.6125  7.0552 82 13.4942 200.4518  18.3594
33 8.2367  75.1204  7.2772 83 13.5820 203.0547 18.5839
34 8.3725 77.6065 7.5073 84 13.6688 205.6477 18.8116
35  8.5084  80.1218  7.7296 85 13,7556 208.2526  19.0361
36  8.6404  82.6163  7.9594 86 13.8414 210.8478  19.2638
37  8.7725  85.1384  8.1819 87 13.9272 213.4546 19.4884
38 8.9011 87.6406 8.4115 88 14.0120 216.0519 19.7160
39 9.0297  90.1689  8.6342 89 14,0968 218.6605 19.9406
40  9.1550  92.6782  8.8637 90 14.1807 221.2597  20.1682
41  9.2804  95.2123  9.0865 91 14,2645 223.8701  20.3929
42 9.4028 97.7281 9.3158 92 14.3475 226.4713 20.6204
43 9.5252 100.2676  9.5388 93  14.4305 229.0834  20.8451
44  9.6448 102.7896  9.7680 94 14.5125 231.6865 21.0726
45 9.7644 105.3341  9.9911 95 14.5946  234.3002 21.2973
46 9,.8814 107.8618 10.2201 96 14.6758 236.9051 21.5249
47  9.9984 110.4110 10.4434 97 14.7571 239.5204 21.7496
48 10.1130 112.9440 10.6723 98 14.8375 242,1271 21.9771
49 10.2275 115.4977 10.8956 99 14,9178  244.7440  22.2018
50 10,3398 118.0357 11.1244 100 14.9974 247.3524 22,4293
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in the vector uE Qg’l. From Eq. (4.6), it is clear
that the i.th element in the vector
wo +Q Qe ™) is the probability

that the system is at state (k+1), at discrete time
n, given that the initial state was i. The i-th

!
can be similarly interpreted and consequently, the

element in the vector u: (Ik + Qk » Qi ¥ 25h

i-th element in the vector u{ Q:_l is the proba-

bility that the system, starting at state i, reaches
state (k+1) in exactly n steps, for the first time,
without ever passing through state zero. Using the
jargon of the followers of Moran, this is the proba-
bility of first overflow occurring at time n, before
emptiness, given the initial state i of a finite
reservoir of size (k+l1).

Similarly, the i.th element in the vector

T -1 pork: ’
Zk Q: is the probability of first emptiness occur-

ring at time
state i

n, before overflow, given the initial
of a finite reservoir of size (k+1).

Equation (4.17) indicates that the second moment
of the range can be written in terms of finite reser-
voir concepts like the probabilities of first empti-
ness before overflow and of first overflow before
emptiness.

2. Continuous Net Inputs

For illustration purposes, a convenient approach
to the range analysis for continuous inputs is to
start with a convenient "discretization" of input, to
find the solution for this discrete case, and to im-
pose the conditions under which this solution tends to
the solution of the continuous case.

Normally distributed net inputs are studied
first. The distribution of Rl and R2 are derived

and the distribution of R, 1is shown to depend on
integrals that do not exisé in closed form, thus sug-
gesting that numerical evaluation is unavoidable.
Actually, even the distribution of R2 depends on an

integral that does not exist in closed form, namely,
the cumulative distribution function (c.d.f.) of the
normal distribution, which is, of course, tabulated.

The second type of net input studied is the
Laplace distributed input, because the integrals in-
volved can be easily evaluated and results in closed
form are obtainable.

Finally, exponentially distributed inputs are
studied, to illustrate that for moderately large
values of n, the type of input is relatively unim-
portant. The exponential distribution is chosen as a
drastic departure from normality. The case of gamma
distributions which are important in practice falls
between the exponential case and the normal case.

2.1 Normally Distributed Net Inputs. Consider the
following binomially distributed net input, for m
even:

M " - m
P[xt =1i) = Pi mC G (1/2) (4.24)
G +1)
m m m m
for i -E,-E*l,..., 0,...,5“1,-2-.

Notice that E(X.) = 0 and var(X,) = m/4.

Furthermore, notice that the distribution is symmetric,
e pi - p_i. Thus the one-step "restricted' tran-

sition matrix can be written as

Po Py Py eer Pz Prp Prgy
Py Py Py eer Py Proz Pro2
P, Py Py v Pps Prog Pyo3
Q=|. : . : 5
Py.3 Px-qa Px.s - Pp Pp Py
P2 Px-3 Px-qg =+ Py Pp P
| Pe-1 P2 Py - B3 Py P |

Using Eq. (4.9), for n = 1, and using the symbol
' to denote the discrete range,

L = -
P(Rl k) Ak+1 Zkk + Ak-l i

Recalling that A and are the sums of

ke1” Mk Me-1
all elements in the one-step "restricted" transition

matrices of sizes k+1, k and k - 1, respectively,
one has
T = = - - - =
PRI =K = Oyyp =2 - O = [ = 20
or

PRy = k) =2 C a/)"

m m
G +K)

For large m, the normal approximation to the
binomial distribution can be used and
2

@E/—;)

is the density function of

PR} = k) =

VZ

S -

where ¢(v) = oL, o
V2n
the normal distribution.

It is convenient to express the range in units
of the standard deviation of the net input, and thus

2R
1 2k),4¢2k

pl cnt w S50 5.0 288y

(.fs 5 &

2k 2Ry
Changing variables y = — and Rl = —= and
/m . /m
then taking the limit as m + = ,
4 m
f, () =— - o(y) * —5 =2¢ (y) (4.25)
Rl JE 2

Now moments can be easily evaluated:

] b 2
ER) = [2yetn) = /2 [ ye/2Vay - /2
o (4]



and

L] L « 2
e’ = [ 2y - /% [ Y2V 4y =1
o

and finally

PR, = K) = A2 -2-1{2] & x{fi

4 k+1
Equation (4.25) is an already known result: the = s2 i I;k (s, + )
probability density function (p.d.f.) of the range for k+1 o i ¥ Prel-i
n =1 is equal to the p.d.f. of the absolute value of
the net input. i=k i=k-1 ;
To find the distribution of R}, Eq. (4.9) is =2 BT L Bkl

used again:

- (2) _ 5, (2) (2)
P(Ré = k) = lk+ 2 + kk—l =

1&2) can be written as l? Qi 1 where 1
is a column vector of size k with all elements
equal to unity, and 1? is its transpose:

’*{2) T QE 1eqf Qk](-l-T Qk]T

and
T -
1 Qk = [s1 Spoe v e s Sp sk]

where s. is the sum of elements in the i:th column
of Qk'

Then,
i=k
xéZ] = I s?
j=1 *
Similarly,
NO)

k+l = 1 Qk+] 1= (1 Qk+1"’£1 Qk+1)
and
L Gy = [5y*Py 3Py g0+ 8y 1*Py 5Py %]

where S5 (i=1,2,..., k) is the sum of elements in
the i+th column of Qk and Skel
ments in the last column of Qk+1'

is the sum of ele-

Then,
i=k 2
(2) 2
M1 = B O YRt
Similarly,
o R 5 R, T T
Ma=i Q10 ¢, 9.,

and

Q.1 * [8) - Py S3 =Py ge oo o o3py - Pyl
where the si‘s have been defined previously.

Then

After some elementary transformations, this equation
can be rewritten as

P
PRy =K) =4 py (“g"*ﬁ"'"‘l’k-l*ka)

oPk PPo

+ 2( + plpk_1 oL+ Pk-lpl +

Proceeding as before, the range is expressed in
units of the standard deviation of the input, the
. nermal approximation to the binomial distribution is
introduced, a convenient change of variables is made
and the limit as m + = is considered. The result
is, then,

y y
£ () = 40) [ ¢ du+ 2 [ ¢()é(y-u) du
2 0 0

where

1
i) = 2o & F7

Y y 0
[ edu = [ ¢(u) du- [ ¢@)du= o(y) - 1/2,
0

and
¥ y 12 i
T swety-wydu = [ L o7 L 70 gy
0 /2n Vo
c L3P ) Ly Gy /D
V2 0 Vir
oIV

1
= — ¢ (y/V2) ¢ (w) dw
Y. f/__

N

b /D) [6Gy/V2) -4 (-y//D)]

= L
vz
VZ 4 (y/V2) [e(y/V2) - 1/2].
Finally, one has

fo (¥) = 40) [o(y) - 1/2]
2

+ 272 4 (y/V2) (8 (y/V2) - 1/2).
(4.27)

For completeness, the first two moments of R

will be derived, using Eq. (4.27): 2
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ER,) = ;I: 4yg(y)e(y) dy - Z 2y6(y) dy
* Z 2/7 yo /D8 (y1/D) dy - Z 2 yo(y/"2) dy
E(R,)) = (4 + 472) :I;yo(ymn dy - (2 + 2/2) Z y$ (y)dy
-m~~4/2'3-2121r ae—2) -2+ 2/0) é
or

ERy) = /2 (e 2

which agrees with Anis and Lloyd (1953).

Similarly,
2 TR B 7.2
ER)) = £4 Y o ey dy - { 2 y%(y) dy
22 v 6 (/Y20 (y/V2) dy - £ /2 y2o(y/v2 ydy
= (4+8) ﬁ Yoo dy - (2+4)£ v ) dy
where
[ y2 e dy = 172
0
and
[V ewem ay =2+ L,
0
so that
el of oA R
TemES SX-ZR A S8

The purpose of the derivation as presented here
is to emphasize similarities between the discrete and
the continuous cases, because the former can be used
as a numerical integration algorithm to solve the
latter.

It is obvious from Eq. (4.27) that to evaluate
fR (y) for a particular y = a one has to pick the
2

values of ®(a)
a
| #(y) dy does not exist in closed

-0

form. Consequently, in this sense, closed form solu-
tions for the range of partial sums of normal vari-
ables do not exist, except for n = 1. This fact can
be once more illustrated by studying the range for
n=3.

and ®(a/v2) from tables, because

the integral

5 . 0 1),

PRy = k) = A0}

24

As before, the solution consists in writing:

(3) _ T . 0
Mool = L Q)+ Q@ Q)" s

.I'.Ak(:'o] . (_I_T Qk} . Qk' QT Qk)T .

(3) T . T T
i Meep = Qe g) Q@ Q)

There is a considerable amount of algebraic work
involved. After simplifications, the range is ex-
pressed in units of the standard deviation of the in-
put, the normal approximation is introduced, a change
of variables is performed and the limit as m + = is
taken. The final result is

g, 0) = 400 + B - 1/2)?
. + 4 (y) e(y/VD) [0 (y/YD) - 1]
+ A2 (y/VD) [0(y) - 1/2][8(y/Y2D) - 1/2]

+ Zp(y/V3)T(Y)

where
1.2
sv) = ——e" 2"
V2T

v 1 2
o(v) = [ ——e 2% du
-® ¥ 2T

v
Tv) = [ g{‘/gu -/%v)[o(ﬁ v-u/v2) - e(-u/v2)] du.
0

Clearly both @(v) and T(v) do not exist in
closed forms. Furthermore, to the knowledge of this
writer, T(y) has not been previously tabulated.
Thus, the next step would be to tabulate such a func-
tion, solving the integral by numerical methods. But
this would solve only the case n =3, For n = 4,

a new integral would be introduced, which would also
have to be tabulated, and so on.

An obvious alternative approach is to solve the
whole function f, (y) numerically, rather than
n

solving numerically only parts of it, such as T(y)
in fR (y). This can be done by using a binomial in-
5

put such as the one given by Eq. (4.24), for a large
value of m.

The selection of m is tantamount to the
selection of the increment Ay in a conventional
numerical integration algorithm. It can be shown
that in order to obtain a specified accuracy over a
wide range of values of n, m can be chosen inversely
proportional to n. Then, it is clear that there
exists a value of n sufficiently large so that m
can be very small. Thus, for large n, even the
simple random walk is a good approximation, and that
was essentially Feller's approach (1951) to the
asymptotic distribution of the range of partial sums
of independent random variables.



In this paper, the value m = 100 was selected.
The numerical results for n = 2' were compared with
the exact results from Eq. (4.27), and the accuracy was
considered satisfactory. The value m = 100 was kept
constant and n varied from 2 tdé 50. Consequently,
the accuracy, which was satisfactory for =n = 2, in-
creased with the increase of n.

The program for this numerical evaluation is
extremely simple, because the matrix Q is obviously
patterned, and thus it can be represented simply by a
vector. Instead of powers of Q the program computes

vectors lT Qn and thus computer memory requirements
are minimal.

Figures 4.1, 4.2 and 4.3 shown the probability
density function of the range for n=2 and 3, n= 4
and 5, and n = 6 and 7, respectively. Figure 4.4
‘shows the density of the range for n = 8 and com-
pares some of the density functions shown in previous
figures.

Figure 4.5 shows the probability density function
of the range for normal net inputs and n = 2, n =8
and n = 50, as compared with the asymptotic density
found by Feller (1951). A change of variables was
necessary to make such comparison: the range is ex-
pressed in units of V/n.

It is interesting to study the distribution of
the standardized range, i.e., the distribution of

Rn - E{Rn}

var® )172

fthY)t
0.50

025

This was done for n = 2,3,..., 6 and for the
asymptotic range as well. In Figs. 4.6, 4.7, 4.8,
4.9, and 4.10, the standardized asymptotic density
function is compared to the standardized density func-
tion for n = 2, 3, 4, 5, and 6, respectively. The
conclusion is that the asymptotic result is a remark-
ably good approximation even for n as low as 2, when
the influence of the first and second moments has been
removed. For n = 6 the standardized exact density

and the standardized asymptotic density are practically
identical.

Consequently, if one desires to have a result in
closed form for the density of the range, in the case
of normal net inputs, it suffices to correct the asymp-
totic result for the exact mean and variance. The
exact mean is known (Anis and Lloyd, 1953) to be

7 i=n /9
w

E[R ] = r i
» i=1

and the exact second moment obtained numerically is

shown in Fig. 4.11, for n = 1,2,3,..., 50.
" ®

2.2 Laplace Distributed Net Inputs. The Laplace
distribution is also called the double exponential
distribution, or the first law of errors. Its density
function is:

iz -2 [x=u|
fx{XJ = "2"&" e a u (~m<x<+m)
where E[X] = u, Var [X] = o’ and |x-u| denotes the

absolute value of (x-u).
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Fig. 4.1. Distribution of Rn for independent normal net inputs (n=2 and n=3).
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For the standard Laplace distribution, p = 0 and
o =1, and thus,

£,(x) = ‘/-g:u'ﬁ |x[. a

For n = 1, the distribution of the range of partial
sums of Laplace distributed random variables is, of
course, the distribution of the absolute value of the
net input (see Eq. (4.25) for normal net inputs),

5 -7
fRI(yJ % B R ooy (428
and thus
ER) =vZ [y & ZY. %2
0 2
2 TR .
ER) =72 [y“e ‘@Yﬂ,
0
For n = 2, using Eq. (4.26),
Pg Py
P(Ri = k) = 4pk ( LI SURAETEIR G ST Ei
Pol’k pkpﬂ'

R it TR Rl TR Ry
where now pi = P{xt = i) refers to some convenient

discrete approximation to the double exponential dis-
tribution. Recall that Eq. (4.26) was derived for
symmetric inputs, and thus it is applicable here. A
similar expression can be easily found for nonsymmet-
rie inputs.

Changing variables as appropriate in Eq. (4.26)
and imposing the conditions under which the discrete
approximation tends to the actual continuous net in-
put, in the limit the result is:

)

y
W =42 Y (] Tug,
2 0

y
+ 2 f Tﬁ anﬁu-g e-/f(y-uj du
0
"2y e-ﬁy =i Q-ZEY (4.29)
and thus
ERy =72 [ Yﬂ_ﬁydy+f yze"@"dr
0 0
-fz_fyo'z'fz-ydy
0
o2 . 02 3 1%
2 T T T
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£ (-]
E[R%) =2 [ yz e-Ji Yay + | ys e"JE Y dy
0 0
=N T ¥ 22y dy
0
=2 B )
Ny gt

Before continuing, it should be noticed that
Eq. (4.9) is actually a second-order difference equa-
tion, which is the discrete analogue of a second deri-
vative:

= - @ (n) (n)
PR =k) = A 1 - 247 « A 07

= o - - o -

Consequently, an obvious approach consists in

(n)
k

writing the continuous analogue of A and differen-

tiating it twice to obtain fR (y).
n
The continuous analogue of lek is

y
Hugy) = i Eluy-up) du, (05 uyenl

where y 1is the analogue of k, after a convenient
change of variables (see reasoning leading to Eq.
(4.25)), and where f(.) is the density function of
the net input.

Similarly, the continuous analogue of Q:ik is

y
*(uzly') — gf(uz-ull "(ulnY) dul.

Following the same reasoning, the continuous analogue
T
of lek is

¥
v(u,y) = {;ftun-un-l} Y y) du o (4.30)

which can also be written as

yy oy
v = S DT e e ) e )

f(uz—ul) f(ul-uo) duo du1 il dun_z dun_l.

(4.31)

In view of Eq. (4.30), the continuous analogue
of 17 QM 1, is simpl
% %k =% i
Y
v, 0) = g ¥ ,y)du (4.32)

which can also be written as



Yy Yy
() = g g [ ... é é fu-u ) £Qu -u o).
. £(uymu)) £Qup-ug) dug du) ... du o odu ) du
(4.33)

Now the first derivative of yn(y) with respect to

y is the cumulative distribution function (c.d.f.) of
the range and the second derivative of L & (y) is its
probability density function.

Furthermore, the analogue of Eq.

ER) = Lin [y - v, (0],
y-bﬂ

(4.12) is:

(4.34)

and the analogue of Eq. (4.13) is

ERD) = 2 [ (BR) - [y - v, ()]} dy. (4.35)
0

The above results are general. In the sequel,
they are applied to the particular case of Laplace
distributed net inputs.

For n =1 and Laplacian net inputs, Eq. (4.31)
gives
Yy
V(uy,y) = [ £§ o 7% loy7y] du,
0
u = ¥y < =
7267 0o gy v T /7 2000 gy
0 u, 2
1
= 1 "’2— 1 -l/_ -
l-5e “1_5, 2 (y=u).
Equation (4.32) furnishes
0) = f $layy) duy =y - 2Z 2y
v, v 0vul.yJ u =y -5 v e
Using Eqs. (4.34) and (4.35),
] Z V2 -2 V2
ER) = 2im [5-55 e Y]—-i
y-.ﬂ
and
E(Ri) =2 [V 7y dy = 1, as expected.
072
Finally,
Ay s iy
fREY] ey Sl [1-e 1=72e =
1 dy’
as in Eq. (4.28),
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Similarly, for n = 2

y - L -
V(u,,y) = £ % o~"2luymy) [ - —;- V2. uy
. e 20r-uy), au,

1 _-v2 uy .5 1 -2 y V2
=1-58 Z[T-Ze +—2—u2]
1) 5L LY 2 )

and
y ' V2
Y,0) = I ¥(u,,y) duz-y-ls-—
V2 + ) o _{_58-2/2-}'
then
-2
E(R,) = Lin {78—"5-[/5 v 3yl e"2Y
yre
+§e—2x2_y]= ?!
T -z
BRY =2 [ 12 + 31 e Y gy
0
) ‘-’I '2‘/_7:1 19 .
and finally,
2
dT()’) -2 _2‘/'5
£0) = —5— SRR R R T
2 dy
as in Eq. (4.29).
Similarly, for n = 3,
vugy) =1 -3 (LY Ty
-2/2,
o %E G 2 Zy]
V2 V2 13
[3:_ - “5‘3'“3}
_%a_@—(y-uz)
11 7 -2 Z. . 7y,1 27y
-{[-—8-—- i%® ¥ A FYe +16 e ]
[% /_ 2] (y-ug) +%(r-u3)2}
and
7
Yy 0 =y - 19'/_ [—2—"',_ *g—r*ﬁyzle o
-2/2 V2 -3/2
-[—-z—mr lvlez Vegge



19v7 47V2 9 V2 2. 2y
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102 1 1 27y /2 32y . 19/‘
B T 7
2 T 4T 9 VZ 2. /7
E(Ry) = 2 - 5{32 vy eyl e Yy
RN R
0
vZ -3/Zy 95
+ 2. 95
g dy = 33
and flnally
V2 V7 -
£ (y)-'d ”‘Yl -5 Sy 2y Y
d)'
= [ééz + 2 y] 3-2/5 + Efz e'SJE :
16
Similarly, for n = 4,
vb(u‘.y)-1-10'{5“4{[—2%-%%55"—/%?9'&’
oy -2/2 vZ -2/7
< 3%7 12 i 2y . g% " 22y, T% y e 272 y
1 32y
"6 ° ]
vz f' -2 L
BE G A Ly
V2 e—ZJE y] 5
4
7 1 /_y v"':i
*ljg -6 v 4 74 Y4
LT (B Ty By
1 -2 -/‘
_f_(syzezy+ 2 yfg'ye:’/!‘y
1 -3/2y
-..6-.4.e ]

29/- /‘ -2 Yy

e 2y, ég o-2"2 N

1
_gye

Coug) -llﬁa"@ N gup? e o’
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f4{r)-y-% +[%2Q ,g;yhl_%@' 2
+__.y] 7 y_ [m'2 " %l“-'%yzl o272y
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then
187 V2
ERY) =138 »
61¥2 , 57 1002 2
E(R4)=2f[ MR A -
1 -V
sy 1o gy
T AWE 1 Vi 2, -7y
<4 L T g rle dy
=) -3/7
+ 2 g [Eééi + -% y] e Y ay
T V2 -4/7y 8722
”z-gi"z'i"' ™ 1836 *
and finally,
: a?y (y Wi o 21 3/7 2
Lihe—ail « 5« gy + 50y
4 dy
1. % F
t137]e L
= [Iiz + y + V2 y ] 272y
{9./" y] 32y 12 42y
F) 16 3 .

Figures 4.12 and 4.13 show the density function of the
range for Laplacian net inputs compared to the density
function of the range for normal net inputs, for n =
1,2,3, and 4.

For general n and Laplacian net inputs, ¢[u +Y)
can be written as

../f u 2 n-1
e n [a0 tau +a, u o+ 5 ]

1
2
1 -72(y-u)
2

n'[a, +a (v-u) +a, (Y-—un)z

-1
ces @ g (y-u“)I1l ]

where the ai's are functions of vy.

Writing V(u  ,.y) as
1% %_e—ff U1 [uo + @ ¥ + oy u:+1
% e G u::i ™ uﬁﬂ]
= % e'JE (r-upey) [ag * ay(y - u )
* e SR s B P

the recursive relation between ai's and ui's is
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Fig. 4.12. Distribution of R1 and R2 for independent Laplacian (L) and normal (N) net inputs.

0.25

% .0 2.0 3.0 2.0 5.0 6.0 70 5y
fr (W)
4
0.50}
0.25
0 A 1 1 1 -
0 1.0 2.0 30 4.0 50 6.0 70 3

Fig. 4.13. Distribution of R3 and R4 for independent Laplacian (L) and normal (N) net inputs.

34



s T 1 21 1 3t 1 (n-2)! 1 (-1)! 1 | :_'
° 7 @D B h? /™! /)" "
120 1 31 1 (-2)! 1 (-11 1 a
| Bt 2 3 n-2 Tl | ! '
22 (2/2) (2v2) (2/2) @™
. ; % A ¥ oz L. 2 1 (m-1)! 1 : il
_ a2 27 21(2/2) 2t @™ 21 @™ |2 pi
2 E 1
iy & B _;_ 1 @2 In4 (-1 1 o |a
27z 3t @)™ 31 2"
y (m-2)! 1 (-1 1 .
oy 9 2 o, v o @™ o ™Y |
’ ' o 1 1
@1 0 0 0 0 R 272_ B ol
1
oy | & 0 0 0 - 0 L
(4.36)
and i-l‘] j:-n-i _:
. R T L S (i-1) =y-ER)+ '51 AL y e 1'/2_"-(*1-39)
Gy =af +1-Fe [ Zaz =1l i=1 j=0

i=0 “r=0 (i-r)! (2/2)" "

(4.37)

There is no recursive relation for vy_(y), which

would be, of course more appealing. Conseﬂuently, one
has to use the recursive relation for the functions

ai's and to get Yn(y) in the following way:

¥ Zu
LW ey - £ e n [ag+ a u + ...
n-1
* an-—l un ] dun
n-1 y
=y+ ¢ [[ e Z Yn . a ui du_]
i=0 0 L
n-1 7 i - i-r
=y+‘£ [g_ezyg L._y‘_r'l'll
i=0 r=0 (i-r)! (¥2)
n-1 g
- 2 ‘}Hl & (4.38)
i=0 (V2)

Recalling that the a,'s are functions of vy,

i
Yn(y) can be rewritten as

Ya0) =y - ER) +

+ [b1'0+h1-IY+b1,2Y2+'"+b1_{n_l)yn 116—/5 y
+ [b2-0+b2-1y*bz.zyz"“*bz.(n-z)r“'zle'z'/f y
+ [b3.°+b3_1y+b3'2y3‘.l.+b3_{n_3) n-3]e-3/5 y
w5y '+[b(n-1] _U+b(n_1)_lyle(n-1]/2_ y +bn.0e_n,’2_},
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Consequently, ther are n(n+1)/2 parameters in
the density fR(y). The second moment of the range

n
follows from Eq. (4.35) and (4.39):
w i=n j=n-i i 3/
ERD) =2 | = z bi.ijelzy
“ 0 i=1 j=0
i=n  j=n-i i1
=2 Z L . s
i=1 j=0 (iﬁ]]*-l 1.
(4.40)

The first moment of the range is more easily
seen from the following expressions:

ER)) = ./_g.- 2 ¢ (%)2

B®y) - B®p) = 322 - 327 o
Hiky) = BOL) = %_g_ﬁ o %/2-" %'3/'5 = 72 (s (%)6

1.8
E(R,) -EQR;) = i_g%/f_ i_gﬁ" ” %ﬁ- /2-&04 @

or in general,

ER) - ER ;) = /2 ,C (3) (4.41)
or equivalently,
i=n
ER) = Y2 ¢ Ziciti-}zi (4.42)
i=1



This result could be derived from Spitzer's Lemma
(1956).

It is interesting to note that applying
Stirling's approximation to the factorials involved in
Eq. (4.41), one has E

ER) - ER ) /%7'—5

which is an exact result for normal inputs (Anis and
Lloyd, 1953).

Table 4.3 shows the values of E(Rn) from Eq.
(4.42) and the values of E(R)) from Eqs. (4.36),

(4.37), (4.38), (4.39) and (4.40), for several values
of n. Figure 4.14 illustrates the convergence of
the exact density of the range for Laplacian net in-
puts to the asymptotic density function.

TABLE 4.3 MOMENTS OF THE RANGE FOR LAPLACE DISTRIBUTED

NET INPUTS
2
n E(Rn) E(an VMR(RRJ
1 0.7071 1.0000 0.5000
2 1.2374 2.3750 0.8438
3 1.6794 3.9583 1.1380
4 2.0661 5.6784 1.4097
5 2.4141 7.4949 1.6670
6 2.7331 9.3884 1.9184
7 3.0294 11.3407 2.1636
8 3.3071 13,3434 2.4065
9 3.5694 15. 3867 2.6462
10 3.8186 17.4661 2.8846
11 4.0564 19.5757 3.1211
12 4.2844 21.7126 3.3568
13 4.5035 23.8730 3.5011
14 4.7149 26.0551 3.8249
15 4.9192 28,2563 4.0578
16 5.1171 30.4751 4.2902
17 5.3092 32.7097 4.5219
18 5.4960 34,9591 4,7533
19 5.6778 37.2219 4.9842
20 5.8551 39,4973 5.2148
21 6.0282 41.7843 5.4451
22 6.1973 44.0822 5.6750
23 6.3628 46.3902 5.9048
24 6.5248 48.7078 6.1342
25 6.6836 51.0343 6.3635
26 6.8393 53.3693 6.5926
27 6.9922 55.7123 6.8215
28 7.1423 58.0629 7.0503
29 7.2808 °  60.4206 7.2790
30 7.4349 62.7852 7.5075

2.3 Exponentially Distributed Net Inputs. The
distribution of the range of partial sums of exponen-
tial random variables is studied here to illustrate the
influence of departures from normality in general and
of the coefficient of skewness in particular. The
exponential distribution is chosen as a drastic exam-
ple of departure from normality.

The distribution of the range for n = 2 was
obtained analytically, and for the cases n = 8,
n = 50, the solution was numerical. In Fig. 4.15
these distributions are compared to Feller's asymp-
totic result is different from the cases of normal
and Laplace inputs, in the sense that the mode of the
exact distributions is larger than the asymptotic mode.
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In the particular case n = 2, the result is
£0) = 2 [(2(e¥-eY) + y(e¥+ e)]  for osy<l
2

£ = &2 @y (-e) ¢ 27 for 1¢ye2
2

1 -2

£,00) = PR AN ORI e ye‘z) for 2<y.
2

A final remark can be made, having to do with the
fact that finite jumps, as the one that occurs in the
case n = 2, exist also for higher values of n, and
the numerical integration algorithm, being a discreti-
zation procedure, may not detect them. Of course,
this does not invalidate the conclusions regarding
convergence of the exact results to the asymptotic one

2.4 Closing Remarks. In this section, the probability
density function of the range of partial sums of in-
dependent, identically distributed, continuous random
variables was shown to be given by

= | ¥y Yyy
d
£ (y) = 1T ... € -u_ ) £fu ,-u_.)
R &2 |ooo 000 ™ oml n-1 "n-2

i f(uz—ul) f[ul-uoj . duo dul duz

e dun_z du“_1 dun

or, in short notation,

a%y )
fgl0ce =g
n dy

Recall that £(:) is the density function of the

input.

An example of application of these results was
given for the case of Laplace distributed net inputs.
Although algebraically complicated, the solution is
conceptually very simple and this writer certainly
disagrees with Feller's assertion (1951) that "it is
practically impossible to calculate the exact distri-
bution of the ranges even for n = 3 and simple forms
of the underlying distribution (input)."

In the case of normal net imputs, the solution
was shown to be necessarily numerical and the range
for binomial net inputs was used as an alternative al-
gorithm for numerical integration.

Finally, the range for exponential net inputs was
studied to investigate the influence of nonnormality
in range analysis.

In all cases, comparisons were made between exact
and asymptotic density function.

3. A Note on Existing Asymptotic Results

In this section, the asymptotic distribution of
m is derived in a very simple manner, using the

method of images. This result was first obtained by .
Erdos and Kac (1946) and it is presented here to il-
lustrate that, as often happens in science, it was
known before the works of Hurst (1951) and Feller
(1951) that the square-root law holds asymptotically
for any independent summands with zero expectation
and finite variance. Another objective of the
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presentation of this result is to propose an
approximation to the distribution of m for small n,

when the inputs are normally distributed.

The asymptotic distribution-of R » derived

initially by Feller (1951) is also discussed and an
alternative format is proposed.

3.1 The Asymptotic Distribution of m . The partial
i

sums of any independent sequence of random variables
which have finite variance are asymptotically normal,
and thus the asymptotic distribution of m does not

depend on the type of input. The argument is made
with reference to the simplest input, namely the sym-
metric random walk process, in the presence of one
absorbing state.

The probability that the system moves from the
initial state j to any state i = 1,2,3,... without
passing through (absorbing) state zero is obtained by
summing Eq. (3.22) over all values of i = 1,2,3,....

i==
n n
=z [nC(m;_j)u/z) - nc(n,;\, M,

and only finitely many nonzero terms exist in this
expression.

But when the system moves from state j to state
i=1,2,3,... without passing through state zero,
then |un|<j.

For large n, the normal approximation to the
binomial distribution can be used:

i==
n
151 nc(m;_l)u/z) =
[nc(ml-j)* nc(mz-j )* ] (/)" e (i)
2 2
j== a
iEl nc(n+g+j)(1!2) "
[nc(ﬂ-l-l*j) ’ nc('lli-Z"'-J‘) ks 1 AT (G//n)
B 2
and thus
P [lm | <] =20(//) -1 (4.43)
or changing variables j = xv/n
PUY < x) RS T
—| <x] =2¢(x) -1=/= e 2 du
n "o
which is the Erdos and Kac (1946) result. (Recall

that |m | and |M | have the same distribution).

Consequently,
m o L]
EC(I2D) = [ {1 - [20(x) - 1]}dx =2 [ [1 - 8(x)] = /=
& g /

or, equivalently,
2
E(lm [)® /= /nm0.7979 /n .
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Recall that for inputs having zero expectation,
E(R) =2 ° EM) and thus E(R) = S

1.5958 vn which is Feller's (1951) result.
n =1 and normal inputs, it is clear that

For

Pllm)| <yl =0 () =1 -0(y). (4.44)
Rewriting Eq. (4.43),

Pllm,| <yl = 20(y/ /A) - 1 =1 - 20 (-y//0).
(4.45)

Equations (4.44) and (4.45) can be written as

Pllm | <¥] =1-g (ny) e (-y//n)

and £Lim g (n,y) = 2.
|

where g (l,y) = 1
An approximation to the distribution of [mn|

follows when g (n,y)
only, neglecting the

for normal inputs and small n
is considered a function of n
influence of y:

Pl[m | <] = Fla | O3 =1 -5 (0 (’Y”"TE.;A,,)

Now a result due to Anis and Lloyd (1953) can be
used, namely

_ 2n

P(lm,| < 0] =, C (1/2)

so that, from Eq. (4.46),
2n _ 1

chn(1/2} =1 - 7 & (n)

or equivalently,
2n
g(n) = 2[1 - chn (1/2)“7"]

where, obviously, g(1) = 1
£im g(n) = 2 ,

n-+e

The expression

Pllm | <¥] =Fo 1)

Im, |

s Lo 2fle 48 (1/2)"™ 0 (-y/V0)

(4.47)

2

can be used as an approximation to the exact distribu-
tion of m_ for the case of normal inputs. Figure
4.16 shows“the reasonable agreement between Eq. (4.47)
and the Monte Carlo results presented by Yevjevich
(1965).

From Eq. (4.47),

= = d
E[lmn“ g[l Fmiy)l Y

201 -, ¢ (/2™ {) [1 - (y//m)] dy

/n

2n
2[1 - 2nCn(lfzj 1

N |
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Using Stirling's approximation:

2n 1
C. /)" & —
2n'n =
and thus
E[|m,[] =\/3_ n_J2 M 50,7979 /u - 0.4502
"n " " Vi

and E(R) =2+ E[|m |] = 1.5958 /0 - 0.9003 which

is a better approximation than simply 1.5958 vn.

Notice that to get Eq. (4.47) from Eq. (4.46),
the determination of g(n) was arbitrary. One could
very well determine g(n) by imposing another condi-
tion, such as

)= % 1%
Ef[m [|] == £ i"2
L Vam =1

which is the Anis and Lloyd (1953) exact result. In
this case, another approximation to the distribution
of mn would follow. Furthermore, this approximation

would be as good as the one shown in Fig. 4.16.

3.2 The Asymptotic Distribution of R . Feller's

(1951) result follows immediately from Section IV.1.3,
namely, the range analysis for the random walk process,
when the normal approximation to the binomial distri-
bution is used. Note that this is not an alternative
derivation of the asymptotic density function. It is
essentially the same derivation.
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The results found by this writer are

I jn
=1

i

e W (G-1) ¢ [G-1) x]

J
= 2j ¢ (Gx) + (3+1) ¢ [(G+1)x]} (4.48)
for the probability density function, and

F (x) =2 ¢
Rn/J; j=1

i DI (G- x)

=20 (Gx) + @ [(§+1) x]} (4.49)

for the cumulative distribution function, where

1.2
¢ v) = o2V
V2r
and u
e (w) = [ ¢(v) dv.
Note that
fas/m (0 =0,
an//rT (0):= 0,
and
Fppig B = 1
as they should.



It can be easily shown that Eq. (4.48) can be
simplified to :

jl:u j,pl 2
foim X =8 L (177 37 40x)  (4.50)
n j=1
which is the original Féller (1951) result. It is not

obvious from Eq. (4.50) that ERn//E (0) = 0. Further-

more, it is not obvious that this function is non-
negative.

The main advantage of Eq. (4.48) over Eq. (4.50)
is that the mean can be obtained by termwise integra-
tion. In his paper, Feller found the mean by analogy
with an existing result in the Kolmogorov-Smirnov
theorem on empirical distribution functions. Using
Eq. (4.48) this analogy is no longer necessary, and
the mean is obtained by straight forward integration
as follows.

2§l
ju2 0

G-1) x4 [G-1) x] dx

E[R /7]

ja- ., @
-4 3 1) §xe(x) dx
j=1 0
v 271§ (13 [ G0 x e [G1x] .
j=1 0
Recalling that f kx ¢ (kx) dx = % f v (v) dv =
, one has 0 0
kv/2r
E[R //A) = 4 I N g
V2 2/2n V2n
g 12 1
jfz U e i BT
j
ai-(3+4 I%ll_q
2w j=2 j°-1

ks % 1 5988 e
V2r

A final remark can be made, having to do with the
fact that the asymptotic moments follow very easily
from the moments of the range of the random walk pro-

cess, For instance, using Stirling's approximation in
Eq. (4.22),
2 1
ERpyp) - ERY) = J/; 7y

and consequently,

E(Rm-l) - j-:-_ (1

u‘/%_ 2/ ™ 1.5958 /i

1
e L, 4+

2

3 |-
o
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or equivalently, E(R,/v/n) = 1.5958....

Similarly, using the normal approximation to the
binomial distribution in Eq. (4.23), the asymptotic
second moment of the range can be obtained.

The second term in the right hand side of Eq.
(4.23) can be written as

k=K-1 j==
2 I { I

(V25 (k+1) - 1, k-1) = v, (2j(k+1)-1,K]
k=1

jame
J'si-
- [v(2iGk+1) + 1, 1) - v (2j(k+1) + 1, 2)]}
ju-e
(3#0)
and it can be approximated by

k=K-1 j-w 2
2 I { T =6 [(2j-1) (k+1)/n]

k=1 | j=-o /0
juea
s =L =4 [2j(k+1)/Yn]
j--- n
(j#0)
k=K-1 .
=2 5 . ( 1Jn-l 4 6 [1jk¢l! ]
k=1 i=1 ) vn
i=e i+l =
~ 8 I Llill ] ¢ av
i=1 2i/¥n
2
1 -=V
where ¢ (v) = —e 2
Van
and thus
tin (£, ) - ERD)] = m{‘/?/l_
) e n
i i+l :
s8N o(-zL)]}
i=1 n
i=e i+l
=4 £ -(-)-‘.11 =4 ¢n 2

and finally var[an/v’E] =42n2- % = 0.2261....

3.3 Closing Remarks. In this section, an
approximation to the distribution of the minimum (or
maximum) of partial sums of a finite number of inde-
pendent normal variates was proposed (Eq. (4.47) and
Fig. 4.20).

An alternative format for the asymptotic density
function of the range was also proposed (Eq. (4.48)),
and the asymptotic moments of the range were shown to
follow easily from the concepts outlined in Section
IV.1.3.

4.  Summary
The main items investigated in this chapter are
summarized as:

i)  General approach to the distribution of the
range for independent discrete inputs (Eq. (4.9)) and
is first two moments (Eq. (4.12) and (4.13)).



ii) Generai approach to the distribution of the
range for independent continuous inputs (Eq. (4.33))
and its first two moments (Eq. (4.34) and (4.35)).

iii) Illustration of the convergence of exact
distributions to the asymptotic distribution,
emphasizing that for moderately large values of n

41

the first exact two moments are the only information
needed in practice.

Several examples were given to illustrate the
concepts outlined and a section of comments on existing
asymptotic results was included.



_ Chapter V
DEFICIT ANALYSIS FOR INDEPENDENT, IDENTICALLY DISTRIBUTED INPUTS

As stated previously, range analysis may be
relevant to the design of storage capacities when the
regulation of flows is complete (alternative expres-
sions are "full regulation' and "regulation on the
mean"). This implies that the net input (input minus
output) has zero expectation.

When the mean net input is positive (i.e., the
regulated mean discharge is smaller than the mean nat-
ural discharge), overflows are unavoidable, and are
implied in the design. Negative mean net inputs do
not need to be studied because it is impossible to
regulate a discharge larger than the mean natural dis-
charge for long periods of time. Nevertheless, the
approach described in this chapter can be applied for
both positive and negative mean net inputs.

The study of storage problems involving partial
regulation (i.e., cases when the mean net input is
positive) will be called the maximum accumulated defi-
cit analysis, or simply deficit analysis. One may ar-
gue that deficit analysis as described in this chapter
should be applied even in the case of full regulation
of discharges, and that the criterion of "designing
for the range' may thus be questioned.

The procedure used in the design of storage
capacities, say 30 years ago, consisted in the appli-
cation of Rippl's mass curve to the observed hydro-
logic sequence (Hurst, 1951), as shown in Fig. 5.1
(this procedure has been sometimes referred to as the
""sequent-peak method").

In Fig. 5.1, the cumulative sum of departures

from an arbitrary (and convenient) base value B is
plotted. To study the cumulative sum of departures

Sy 4

from other base values (say, BIJ, the summation curve
is referred to inclined axes (say, OBlJ. It is obvi-

ous that as this inclination changes, different points
on the summation curve may become maxima, or minima.
For instance, hﬂl is the range and AIAZ the maxi-

mum accumulated deficit with respect to the base value
B, CCl is the maximum accumulated deficit with re-

1 and CZCl
mulated deficit with respect to the base Bz. Clearly

spect to the base B is the maximum accu-

the concept of range is meaningless for small base
values.

The maximum accumulated deficit with respect to
whatever discharge is to be regulated (base value)
would be considered the storage capacity required.
Often times this procedure would be used to find what
would.be the regulated discharge, given the storage
capacity. The conventional way to answer this ques-
tion would be to consider several base values, to plot
the relation between storage capacity and regulated
discharge and to fit a smooth curve, usually called
the "storage-yield relationship." Clearly, the only
purpose of considering inclined axes such as 081 and
032 in Fig. 5.1 is to avoid drawing a new graphic for
each base value.

The modern procedure is not very different: it
is essentially the application of the same old proce-
dure, in the framework of the Monte Carlo method. In
other words, sequences statistically indistinguishable
from the actual record are generated, the old proce-
dure is applied to each realization, and the

L 1 L 1 L

50 60 70 80 90 100

Fig. 5.1. Example of application of a Rippl's mass curve.
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distribution of the maximum accumulated deficit is
approached from a relative-frequency standpoint. Usu-
ally the sample mean value is taken as the storage re-
quired (Fiering, 1965). .

Surprisingly, virtually no theoretical work has
been done on this topic. The main reason seems to be
that figures such as Fig. 5.1 are misleading, in the
sense that the engineer may reach the conclusion that
no simple connection exists between the storages re-
quired to guarantee different discharges.

The objective of this chapter is to study the
properties of the maximum accumulated deficit. As in
Chapter IV, the case of discrete inputs will be
treated first. In the sequel, asymptotic results will
be derived and the case of continuous inputs will be
considered.

j Discrete Net Inputs

Initially, some concepts related to the theory of
Markov chains will be outlined, the relevance of which
will become apparent later.

Consider the sequence of independent, identically
distributed discrete random variables Xt (t=1,2,...,n)

such that P[xtai] - Pi' Using a terminology similar

Re

into a res-
Furthermore, let this reservoir

to Moran's analysis of the finite reservoir, let

denote the net input at discrete time t
ervoir of size k+l.

be such that when empty, it continues empty with prob- -

ability one, and when full, it continues full only if

the net input in the next discrete time is nonnegative.
Then the amount of water stored follows a simple homo-
geneous Markov chain with state space {0,1,2,...,k+1}

and one-step transition matrix P' as shown here

0 1 5 3 k-2 k=1 k k+1
o1 e, t, 2,4 tiz bk ko taa
1o p, Py P, Pges Pogs2 Poger Pux
210 p,; Py P Pxes Poges Pogez Poxal
3o Pip P'.l pa x Pk.5 Poxes P-k#S P_ks2
k-2 0 p‘_k_s P"k-‘ p.’k_s Po p-l p_z p_:
k=110 Py o Pupuz Pepg =t Py Py By, Ry
k10 Py Pagez Pokes P2 Py Pp Py
k1] 0w, Uy Yge2 Ws Mg a Y
(5.1)
where
u; = py * pj+1 Pjeg * oo (j =o0,1,2,...k)
and
z_j = p_j + p_j_1 + p_j»2 + (= 1,2:3,...%+1),
Clearly the matrix P' can be partitioned as
T
p! =[—; G
k+2
a1 P Re®)
—
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where (U is a column vector of size (k+1), with

all elements equal to zero; the symbol T stands for
transpose, and the subindexes denote the size of the

vector or matrix. Furthermore,

T
Geoi ® (B Bg von by B44de

The n-step transition matrix is then

T 2 n-1
L 1 £k+1 (Ik+1 + Pk+1 + Pk+1 * oen # Pk+1}
k+2 0 p
—k+1 k+1
(5.3)

The matrix Py , will be called the n-step

"restricted" transition matrix, for obvious reasons.
Notice that this matrix is different from the '"re-
stricted" transition matrix used in Chapter IV.

1.1 Formulation of the Problem. Given the sequence
of independent, identically distributed discrete ran-
dom variables

xt;  AE 3 B (R, | |

consider the partial sums

S_1 =0, SO =0,
and

+

2 wai® Kg

St = xl + X ¢t = 12 aaeihi
and in particular the partial sums which are local

maxima, that is,
s, S > max($ 2 S5 )i
{ ty ot t-1 t+l

i=1,2,..., J; ti < tk for i < k},

where J is the number of local maxima among
{St; b o o R | = i A

For each local maxima

St consider the partial

i
sums immediately following it that are equal to or

smaller than St . Let u, be the largest integer
such that i
{St_w LE R 1’2""'ui}'
i i
Let £, = min St + v
i 1xvzu i

and define the deficit dt by
i
5 QLT Fal PRSRORNS 8
% 5 B

The maximum accumulated deficit Dn can be defined by

D= max d_ .
B i 214X Y
Notice that some of the sets {Sti+v: Sti+v < St;
v = 1.2,...,ui} may be subsets of a large one and



thus the corresponding deficit need not be considered,
because it could not be the maximum deficit.

1.2 Distribution of the Maximum Def1c1t D . The

(s,u) entry in the matrix Pk 1 represented by
(n)
P+l
from state u = 1,2,...,k+1 to state
without passing through state zero.

s=k+1 (n)

L P
s=1
that the system does not reach state zero in the first
n steps, given the initial state u = k+1. But this

is simply P[Dn < k] and Fig. 5.2 illustrates this
fact.

(s,u), denotes the probability of a transition
s = 1,2,...;k+1

Then (s,k+1) depntes the probability

'lrﬁ

is shown in the upper part of the graphic and the same
process, as routed through a hypothetical, initially
full reservoir of size k+1, is shown in the lower
part. Clearly the filtered process preserves only the
deficits dt and the distribution of the maximum

A realization of the process {St; tml,2:0

i
deficit follows immediately.

Sk
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|
|
|
I
I
|
|
|
i
|
!
|
|
I

T
I
i
|
|
K1 ﬁ\\\L// \\\\\_L// ‘\\a~,w’~\\l//
Fig. 5.2. Sample realization of the process

{St; t=l,2,:.00)

ponding transformation which preserves the
deficit periods (lower part).

(upper part) and corres-

Now, from
s=k+l ()
P[Dn < k] = sEI Pis1 (s,k+1), (5.4)
it follows that
s=k+1 s=k
P[D =k] - T p (n) (5 k+1) - L pﬁn) [S)k]'.
& s=1 kel s=1
(5.5)
Equation (5.4), in matrix notation, becomes
PID. <k =17, PB. @ (5.6)
n = %+l Tk+l —k+1 *

a4

where T stands for transpose, the subindex k+l
denotes the size of the vectors and matrix involved,
n 2 :
Prsy 1S given by Eq. (5.3) and
T
La*01..11]
and

T
81 [0 son B 2T

Similarly, Eq. (5.5) can be written as

- 1r

i< i

- n n
p[Dn € x). lk+1 Pk+1 LY Pk =3 (5.7

For practical applications, it may be convenient
to denote the level of regulation a by

[ E(x‘t}] 100% (5.8)

a=[1-~ ¢ 5.8
E(Yti

where ElxtJ is the mean net input and E{Yt) is the

mean natural discharge (gross input). Clearly, for

E(X,) = 0, a = 100%.

For the particular case of constant output
(constant regulated discharge), X, and Yt have the

same variance 62 and their mean values can be
written as

E{Kt) = ug

E{Yt) = co

where ¢ is the inverse of the coefficient of varia-

tion Cv and u is a number between zero and c. In
this case, Eq. (5.8) simplifies to
= -H -
a=[1-% - 100%
or
a=[l- uCV] = 100%. (5.9)
An example will now be given to help clarify the
concepts exposited.
Example 5.1
The distribution of the maximum accumulated
deficit will be found, in the case n = 3, for the
following binomially distributed net inputs:
I P(J(t =1i) = 4 24i (1/2) (i ="-2,-1,0,1,2)
(notice that E(Ktl = (0 and vartxt] = 1)
m Py = i) = (/2)* (L = -1,0,41,42,+3)

4 1+1

(notice that E(X{) = 1 and var(Xl) = 1)

For the first net input, to find, say, P(D3 £2),
Eq. (5.6) can be used:




PO, <2) = (1/16)° + [111]
3~ .
6 471 0
3715
4 6 4 0 EEE?'
1 5 11 1
Similarly, 3
6 4 0
3 2863
P, < 1) = (1/16)° « [11] * e,
3 5 11 1 4096
and
3 1331
P(Dg < 0) = P(D; = 0) = (11/16)° = F55e-
Consequently,

P(D3 =2) = P(Ds.i 2) - 9(93 < 1) = 852/4096
P(D3 =1) = P{D3 <1) - P(D3 = 0) = 1532/4096.

For other values of k in Eq. (5.7), the results are
summarized in the following tabulation

k 0 1 2 3 4 5 6
PO, = k) 1331 |1532 | 852 | 292 76 12 1
3 4096 |4096 | 4096 | 4096 | 4096 | 4096 [4096

Notice that E{DSJ = 1.0942 ...,. Compare this
result with E(R3] = 1,7480 ..., from Example 4.2.

For the second net input, one has

2 10 0]|°o
3 6 4 1 0 0 4096
P(D, < 3) = (1/16)7[1111] - 220
. 4 & &34 o | 40%
1 5 1115 1
a1 0] o0
3 _ 4095
P(Dy £ 2) = (1/16)7 [111] (6 4 1 0| = o
5 11 15 1
4 1 d 0
3 4061
P(D, < 1) = (1/16)" [1 1] - 4061
’ 11 15 1 409

3 _ 3375
P(93 <0) = P[Ds = 0) = (15/16)° = 2096

and consequently:

oo 3875 iy L 686 .
P(05=0) = 7556’ P(P5=1) = 350¢» P(D5=2)
34 P
= J09¢ W P(D43) = 7555
Finally, E(D;) = i%%% = 0.1843 ....

An interesting feature is that the analysis of
net inputs can be used for several different gross in-
puts (natural discharge). In other words, the result

E(03) = 0.1843 ... found above holds for any value of
E(Y,). 1f E(Y,) is, say 4, Eq. (5.8) gives a = 75%.
If E[Yt) is, say, 8, Eq. (5.8) gives a = 87.5%.

This illustrates the obvious fact that less variable
natural discharges require smaller storage capacities
for a given level of regulation.

It is also interesting to notice that the output
(regulated discharge or water demand) can be random.
This simply increases the variance of the net input
(and consequently increases the storage capacity re-
quired), but the procedure is not altered.

A final remark can be made, having to do with the
fact that a reasonable coefficient of variation for
annual flows of American rivers is 0.25. In this case
considering the output constant, the level of regula-
tion correspondent to E[DS) = 0.1843 ... would be 75%

(Eq. (5.9) for u = 1.0 and Cv = (.25). Notice the
drastic reduction in E(DS) as compared with the case
*of full regulation, in which E(03} = 1.0942.

1.3 An Alternative Expression for the Distribution of
Another way of approaching the problem,

D .

-
which will be advantageous later to derive the ana-
logue result for continuous inputs, is to partition
Pi*Z as follows:

. z{ bk

Pez® 1% 4 2
T
0 Uy

(5.10)

where pz = [p_k Pyy1 = Py p_l], and all other

terms are obvious from Eq. (5.1). Notice that now the
matrix Qk' used in Chapter IV, appears explicitly.

Taking into account Eq. (5.3) and (5.6) and
recalling that the sum of elements of each column of

the matrix Pi?z is unity, if follows that the ele-

ment in the first row and last column of Pifz is
1-PD <k =P(@ > k).

It is convenient to work only with the first row

n

]
of Pk+2'
in this row is of interest.
written as

keeping in mind that only the last element
Let this first row be

T
wal?

where dén) is a vector of size k, T stands for
transpose, dén} is a number (equal to P(Dnl > k)) and
the preservation of the scalar 1 is apparent from

Eq. (5.3).

Clearly, for n = l:

%

T
e z{ (5.11)

and

(1)
dg’ = 2 (5.12)

2k-1?



and in general, the following recursive relationship
is obvious:

. T
TR & b
[l d(‘ﬂ}T d(ﬂ]] s [1 d[n-l)T d[n-l)] 0
k 0 - k 0

% Y Py
T
LT

or equivalently,

T T
(n)" _ ,T (n-1) (n-1) T
a4 = b + 4l Q *+dy
(5.13)

T
(n) _ (n-1)
dp " = g * %

(n-1)
Py * d0 Uy

Equations (5.13) will be useful later in this chapter.

1.4 Closing Remarks. In this section, a general
approach was described to obtain the distribution of
the maximum deficit of partial sums of independent,
identically distributed discrete random variables. In
a later chapter this approach will be extended to de-
pendent random variables.

It is apparent that the solution to the problem
is simpler than its formulation.

An example was given to illustrate, among other
things, the drastic reduction in storage capacity re-
quired in the case of partial regulation, as compared
to the case of full regulation.

A final remark can be made, having to do with the
obvious relationship between deficit analysis and
Moran's analysis of the finite reservoir: the proba-
bility that a reservoir ef size (k+1), initially full,
is empty for the first time at discrete time n, re-
gardless of the occurrence of overflows is simply

P[Dn > k] - P[Dn_1 > k].

Consequently, results like Weesakul's probability
of first emptiness with or without overflows for the
case of geometric inputs (1961) can be used directly
to obtain the distribution of D_ for geometric
inputs. #

2.  Asymptotic Results

The maximum accumulated deficit is a function of
the partial sums St (recall definition in Section V

1.1). These partial sums are asymptotically normally
distributed for all independent inputs which have
finite variance, and consequently, the asymptotic dis-
tribution of the maximum deficit is independent of the
undorlying random variable (input).

In this section, the asymptotic result will be
derived based on the deficit analysis for the random
wulk process.

2.1 Maximum Accumulated Deficit for the Case of Full

Regulation. Consider the following probability
distribution for the input:

PIX, = i) =1/2 (i=-1, +1).

Clearly, E(Xt) 0 and var(xt] = 1.
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In this case, the one-step "restricted"

transition matrix Pk+1 is
0 1/2 0 s 0 0 0
1/2 0 1/2 - 0 0 0
0 1/2 0 s 0 0 0

0 0 0 o 0o 1/2 o0
0 0 0 ... /2 0 1/2
0 0 0 s 0 1/2 1/2

L .

and its n-th power can be found using the method of
images.

It follows from Section III 2.3 that the (s,u)

entry in the matrix P:+1 is given by Eq. (3.25):

p{M (s,u) =

jetee .
j::_w[-nl {vn [2j (k+3/2) + u,s]
M [2j (k+3/2) - u,s]}

where s = 1,2,...,k+1; u=1,2,,..,k+1, and where
vn(r,tJ is given by

-
v, (r,t) = nin+r-t)(1j2) z ni ?;-r)(IIZ}n.

fi kel
2

Now Eq. (5.4) can be used as

s=k+1 (n) s=k+l  j=+em ,
PO <k = & p™ (s,;kel) = £ E (-7 .
=1 k+l ssl  j=-w

. {Vn[j (2K+3) + (1), s] - v [§(2ke3) = (keD), sl)

For simplicity, rewrite Eq. (5.14) as (5.14)
P(Dn <k) = Vo + Vl + Vz + VS + V4
where
s=k+1 s=k+1
Vo= I v [(k+l),s] - = v [-(k¢l),s]
0 s=1 M s=1 T

j/i=+=  sz=k+l
Vv, = z E

v, [3(2k+3) + (k+1),s]
j/2=+1  s=1

j/2=-m s=k+l
I b vn[j(2k+3} - (k+1),s]

j/2=-1 s=1
j/2=4= ( s=k+l

= I { I vn[j{2k+3] + (k+1),s]
j/2=+1 L s=1

T e R T T B A FA T

PR TRETACRAS

g S

= =

o S S AT I 5 2R

e

-
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(]

vV, =

s=k+1

s=1

j/2=-e  s=ki]
z

i

if2=-1 =1

v, [

j/2=40  gmk+l

L I
s=1

j/f2=+1

I
jf2=+1

I

i/2=4= {sak+l

s=1

v, [

s=k+1

s=1

(i+1)/2=+= s=k+1
I L

(j*1)/2=+1 s=1

(j-1)/2=-= s=k+l
z L

(3-1)/2=-1 s=1

(3+1)/2=+42 [ s=k+l
; { :

(j+1)/2=+1 s=1

s=k+1

s=1

(3j-1)/2=-= s=k+1
L L

(j-1)/2=-1 s=1

(j*1)/2=4= s=k+l
I I

(3+1)/2=+1  s=1

(j+1)/2=4= (s=k+1
: { :

(G+1)/2=+1 s=1

s=k+1

s=1

In particular, the terms in

s=k+1

z
s=1

and
s=k+1

s=1

v, [(k1),5] = [.C

* ien ¥

n

L v [-3(2k+3) - (R*l),SI}

(2k+3) + (k+1),s]

(2k+3) - (k+1),s]

Va[-3(2k+3) + (k+1),s]

2 vn[j{2k+3) - (k+1],s]}

v [3(2k+3) - (k+1),s]

v, [3(2Ke3) + (ke1),5]

v, [3(2k+3) - (k+1),s]

p v [-3(2Kke3) + (k+1),s1}

v [3(2k+3) - (k+1),5]

v, [1(2k+3) + (ke1),5]

v, [-3(2k+3)- (k+1),5]

IV [3(2Kke3) + (k+1),s]} ;

Vn are

m+k) * nC(nek-1)
3 3

n
-+ C1 - (/2

n

2

Eovpl-0e1),8] = [Cyg) * oCin-k-3)
bl 2

p—_— L /",
I

For large n, the normal approximation to the
binomial distribution can be used as

s=k+1

£ [(ke1),s] = o(k//R) - 1/2

s=1
and

s=k+1

& v [=(k*1),s] = 6(-k//n) - @(-2k/Vn)

= §(2k/vn) - &(k//n)

and thus

Vo =20 (k/¥n) - o (2k/vn ) - 1/2. (5.15)

Similarly, one has
j/2u+w
v, = j/Zz - {¢ [(3(2k+3) + k)/Vn] - @ [§(2k+3)/Vn ]

- % [(-§(2k+3) - kK)/Vn] + & [(-j(2k+3) - 2ka"='1']}

or
j/2=4=
Vip= L {Mlu‘ (2k+3) + k) //a]
jf2=+1
- o [(j(2k+3) + 2k)/vn] - ¢ [j[2k+3)//i]}.
(5.16)
i/2=4w
Vv, 2 {9{(-—j{2k+3) + k)//n ] - ¢ [-§(2k+3)/¥n]
j/2=+1
- ¢ [(G(2k+3) - k)//nl+ & [(5(2k+3) - 2kJHﬁ‘]}
or
jl2=tm
V, s I {- 29 [(j(2k+3) - k)//n]
j/2=+1
+ 0 [(j(2k+3) - 2k)/Vnl+ @ [j(2k+3}/fff]} (5.17)
v, = (3+1)/2=4w
3 L {0 [(j (2k+3) - k)/v/n]
(3+1)/2=+1
-9 [(j(2k+3) - 2k)/Vn]
- & [(-3(2k+3) +k)/Vnl+ ¢ [-j (2k+3}/v’ﬁ']}
or
(j+1)/2=4=
V. % I 20 [(j(2k+3) - k
L { [ (3 (2k+3) - k)/¥n]
- o[(j(2k+3) - 2k)/Vn] -2 [j (2k+31/-’£1}.
(5.18)
(j+1)/2=+=
Vg * T {} [(-3(2k+3) - k)/vn] - @ [(-j(2k+3)
(3+1)/2=+1

- 2k)/V/n] - o[(j(2k+3) + k)/¥n] + ¢ [j(2k+3)//r'a‘]}



or
(j+1)[2=+w

¥ i {-zo[tjczk+3) +k)/Vn]
4 (j+1)/2=41

+ 8 [(G(2k+3) + 2k)/vn] +¢ [j{2k+3)//ﬁ]}

and finally the asymptotic cumulative distribution
function of the maximum deficit is

FDI,//H (k/VR) = [Vy + v, + V, ¥V 2 V,]

= 28 (k/¥Vn) - (2k/vn) - 1/2

jf2=4w

* L {2 ¢ [( (2k+3) +k)/¥n] - 28 [(j(2k+3) -k)//n]
j/2=+1

o[ (j (2k+3) -2k)/v/n] -[(j(2k+3) +2k]//5]}

+

(j+1)/2=+¢

I {2@[(;‘ (2k+3) -k)/vn]-2¢[(j (2k+3)+k)/vn]
(j+1)/2=+1
¢ [(j(2k+3) +2k)/vn] -¢[(j(2k+3) -2kJ/v‘H]}

20 (k/vn) - o(2k/Vn) - 1/2

+

+

"

jte "
: -1y {N[(J‘ (2k#3) +K)/VA] - 20[ (32k+3)-k) /Va]
j=1

o[ (j (2k+3) -2k)/Vn] -0[ (j(2k+3) + ZkJ//EJ}

+

+

= 29 (k//n) -& (2k/vn) - 1/2

]=

oo

+

+ .
r (-1’ {u [(2j+1)k/Vn] - 28[(2j-1)k/Va]

ij=1

+0 [(2j-2)k/Vn] -0[(2j+2]k//ﬁ]}
w 4[e(k//n) -#(3k//R) + ®(5k/¥n) -¢(Tk/VR) + ... ] -1

ar
i (+41)/2200 5L

(x) =4 I (-1) ® (jx) -1. (5.19)
Do/ (+1)/241

Consequently, the asymptotic density function of the
maximum deficit is

(j41)/ 2=+ =1
T

£ () =4 G120 5460, (5.20)
D/ (j+1)/2=+1

The moments are easily obtained by termwise
integration:

A2k

(j+1)/2=4e .
z (-1) [ ix ¢ (jx) dx
0

E{Dn/v’ﬂ) =4
(j+1)/2=+1

3 -1

(j+1)/ 2=+ 2

. 1 5 G5 N
VIT (j+1)/2=+1 J
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4 4 w
=—(1-1/3+1/5-1/74+ ...) = — « —
VZn Vo
. ﬁ
T2
or, equivalently for inputs with variance uz:
E(Dn] = %- T g = 1.2533 /oo o (5.21)
(j+1) /240 L1 @
2 2 P
E(D /n) =4 i (-1) [ 3 x%¢ (Gx) dx
(j+1)/2=+1 0
i1
(j+1)/2=+= 2
= 2 b L:l.zL

(3+1)/2=+1 j

=2 (1 -1/9 + 1/25 - 1/49 + ...) = 1.8319 ...

L

- L ’ : 2
or, equivalently, for inputs with variance o :

E{Di} »1.8319 n » o°

(5.22)
and consequently

var(D ) = (1.8319 - %} s gt w 0,261 o v 0%

(5.23)
and
G @) = '3;_2_5_1_1 = 0.4077
/2
where C,, stands for the coefficient of variation.

v

It is interesting to notice that the asymptotic
mean maximum accumulated deficit for the case of full
regulation is equal to the asymptotic mean adjusted
range (Feller 1951).

Feller's results are compared with the results of
this section in the following tabulation:

N nn/-ﬁ? R;//r? DnNrT
E(+) 1.5958... 1.2533... 1258800
Var(*) 0.2261... 0.0741... 0.2611...
€y (*) 29.80% 21.72% 40.77%

2.2 Maximum Accumulated Deficit for the Case of
Partial Regulation. Consider the following prob-
ability distribution for the net input:

P[X, = +1] = p

P[Xt =-1] = q
Clearly, E(Xt) = p-q and var (Xt) = 4pq.
In this case, the one-step "restricted"
transition matrix pk+l is

S A i



[0 q G s 0O 0 0]
p 0 4 s O 0 0
0 P 0 .. 0 0 0
0 0 0 0 q 0
0 0 0 s B 0 q
0 0 0 aw M P P

The problem is that the n:th power of this matrix
cannot be obtained as easily as in the case p=q=1/2,
where the method of images was applicable. In the
present case, a procedure similar to Kac's (1947)
could be used, but this writer decided simply to illus-
trate the fact that

E(D |partial regulation)
lim =
N E[Dnlfull regulation)

0. (5.24)

Figure 5.3 shows the exact mean maximum deficit
for the random walk process, for the cases

u=ﬂ=0
2/pq

i
U= = 1/2,
2/pq

(1) , (p=0.5)

£1T) (p=0.723606798)

(I11) p=-29 =,
2/pq

(p=C.853553391)

and for n ranging from 1 to 1000.

Figure 5.3 indicates that Eq. (5.24) is true.

E[owse] 4

100

ad 1000 n

! 10 100

Fig. 5.3. The mean maximum accumulated deficit for

the simple random walk process.
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5, Continucus Net Inputs

Starting with the results obtained in the discrete
case, their continuous analogues are discussed, and
applications for some particular continuous distribu-
tions are made.

It is clear from Eq. (5.13),

T T
(n) T (n-1) (n-1) T
G 2hed Grdy T g,
and

T
(n) (n-1) (n=1)
dog " =R g v P *dg 7 Yoo

that their continuous analogues are

b 4

d (v,y) = 2(v ,y) + g d o Opopy) £0pv ) dv

+olo oy (0y) = v ), (5.25)
where 0 <v_ <y,
and

b 4

dn{0|YJ ey 1(0.7) + £ dn—l (Vn_1.Y] f(-vn-l) dvn-1

+d _y (0,y) = u(0), (5.26)
respectively. In the above expressions f(+) 1is the

density function of the net input, y is the analogue
of k and dn(O,y} is P(Dn>yJ =1-P (Dngy) -

1-Fy 0.
n
Furthermore,
-y+vn
svy) = [ £(x) dx (5.27)
and
+m
u(v,) = [ £fx) dx. (5.28)
v
n

Using the recursive relation implied by Eqs.
(5.25) and (5.26),

d (0,y) = u(0) d,_,(0,y) + £(0,y)

¥
+ £ {u(vn_l) do_5(0,y) + 20v, _1,¥)

A
* £ 4he2Wpe?) £V - v, ) dvn-z} £0-vp1) Mg
y
=d 1 (0,y) u(0) +d ,(0,y) é (v, ) £y, ) dv

y
¢ 2(0,y) + [ 2v 1Y) £Cv, ) dv
0



+
Q=<
[=

n-2

and continuing

4 (0,y) =

+

+*

+*

in this fashion, -

dn_l(O.Y) u(0)

4,00, [ u@y

n

QDY O

a4 _5(0,y)

vn-zj fl(""u—l) :'n-z dvn—l

d (vn-Z'y} f("'ﬂ-l - vn-Z) f(-vn-l}dvn-zdvn-l

) 2w ) &,

Y
£ u(vn_zj f("rn-l

Y ¥y ¥
d. 0.9 [ [ [utw o) ety
n-4 £ 0 £ n-3 n-2

" V.3 £0vyq - Vn-2) £C- n-1)

where dltu,y)

Y y
d, (0,y) g e R was gu(\fz] £(vy

Vg wos BOYL 3 =~ Vo) £V 5)-

. dvz dv3 i dvn_l

£(0,y)

y
g zcvn-l’yj £lvyaa) Wy

¥ %
.cf' é"f"n-z*” v,

Va2) £V ) dvp o dv

1

4 f b A
g 0 £ Lvp3Y) £V 5V ) £(vpa

Ya-2) f('1"'11-1]d"rrl-I!d"rn-z"hrrl-l

Y y
£ e =1) ool [ 2(veY) £y,
0

VIJ i f(v“_l - vn_z) f(- n—l}'

dv

dvl dvz e AV

= ]Y £(x)dx = 1 - By

1

(y).

(5.29)
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3.1 Normally Distributed Net Inputs. In this case,
the density of the net input is

1, .2
£(x) = —;7 o T L o).

2n
Notice that the mean net input is u and that
the variance is unity, without loss of generality.
Clearly, for the case of full regulation, u =0.
For n = 1, the results are obvious but they will

be presented here for illustration purposes. In this
case, one has

bt 4
d(0,y) = [ ¢ (x-u) dx =& (-y-u) = 1 -¢ (y+n)
- (5.30)

and thus Fy (y) = @(y+u) for y >0
1

is the cumulative distribution function of Dl. The
density function is then
. -

£, ) = ¢ (y+w) for y20
1

and the mean value of the maximum deficit is

EQD) = [y s0+u) dy = [ (w-u) ¢ (W) dw
0 M

wow) dw - [ u (W) dw = ¢(n) - u[l - (w)].
H

=1

In the case of full regulation, u = 0, then

1
E(D,) = ¢(0) = —
! van

The second moment of D1 is

E0)) = { v 4 o) dy = [ (e b W) aw
i

= I u2¢{w) dw-2ufw¢(w] dw'ruzf#(w) dw
H M u

where J' w2¢ (w) dw = w¢ (w)li + fﬁ(w} dw
" u
and thus
EOD =u ¢ ) + (1 +ud) [1-00)] - 2180

=@ +ud) [1- 0] - e .
In the case of full regulation, u = 0, then
2
E(]) = 1 - 0 (0) = 1/2.

Some values of E(D,) and E(nf) are given in
the following tabulation.




i ] 1/2 1 3/2 2

E[DI) 0.3989 0.1979 0.0833 6.0293 0.0084

E(03)

0.5000 0.2096 0.0754 0.0229 0.0060

Assuming that the gross input (natural discharge)
has the coefficient of variation equal to 0.25 and
that the output is constant, Eq. (5.9) says that the
level of regulation is 100%, 87.5%, 75%, 62.5% and 50%
respectively for u = 0, 0.5, 1, 1.5, and 2. Fig-
ure 5.4 emphasizes the fact that the mean maximum def-
icit decreases very fast as the level of regulation
decreases.

0.4
\
\
\\
0.2 N
~
\-
0 1 1 \‘1‘-—-4 —
100 75 50 al%)
Fig. 5.4. Expected value of Dl as a function of the
level of regulation for independent normal

net inputs.
For the case n = 2, Eq. (5.29) gives

d, (0,y) =d; (0,y) u(0) + 2(0,y)

y
+ [ 8(vy,¥) £(=v;) dvy.
0

L= l{x-u)2
Recalling that f(x) = — e 2 = ¢(x-u) , Egs.

S

(5.27), (5.28) and (5.30) can be used as follows:

-~y -y+vy
1(\'1.)0 = f

¢ (x-u)dx = d(v,-y-u)

2(0,y) = ¢ (-y-u) =1 - ¢ (y+u)

u(0) = { £(x)dx = é ¢ (x-u) dx = &(n)

dj(0,y) =1 -0 (ysw)
and thus

d,(0,y) = e(W)+[1 - e(u+y)] + [1 - o(u+y)]
y
+ g o(vy-y-u) $(-v ~u) dv,
y
= [+ 20010 - ous Y] + [ ol -y-u)e(v ) dv ,
0

and consequently

Fp, () =1 - dz00,)

y
= 0(ury) - o(W) + 0 O(ury) - [ O(vy-y-u) 6 (v +u)dvy
0 (5.31)

and
Y
£y O = oCusy) + 0(W) $Cury) + [ o(v)-y-w)é (v *u)dv,
2 0
- 9(-1) $(u+y)

y
= 2 o(p) o(u+y) + El}' $(vy-y-1) $(v +u) av,.

Noticing that

y-u
fy¢(v1-y-u) o(vy*+u) dv, = / d(w=y) ¢(w+2yu) dw
0

-u
™ e/ - Y 4 L+ s
= W - ¢ + ¥2 ) d
. f2- /E u w
3
1 .Y i Lo o7 ¥
== 9L +V2u) [ #(2) dz = = ¢(—=+ 20 [28(D -1
7z /Z ;i vz 2 vz ]
VZ

one has, finally,

o (1) ¢ (u+ ;g ¢ + ¥V2u) 2@( = l] .
fD {}’} 22 (W) ( y) ‘/_ (/_ [ /_)
(5.32)

Notice that a probability mass exists in the point
Its value is given by Eq. (5.31), making

P(D,=0) = ¢*(u)
and in the case of full regulation, p = 0, then
P(Dz=0} = 1/4, as it should.

The mean value of D, can now be found

2

EM,) = [y f, (y) dy
2 0 DZ

20) [ y ¢ (u+y) dy
0

1 Eowennte ¥
2 o (L+ /2w o ) dy
P2 Erree g Vz
o Pk F B
y ¢ (== + Y2u)dy
s Tt

20 (n) { (u+y) ¢ (wy)dy - 20 () % u ¢ (u+y)dy



= 5
(JE

+

z“ ) 4=+ ) 0 (D
! 7 T

2 [ /s (e VB ¢ (Ddy
5 bt B i

-w(l«».liu]q.(infz‘m T @iw oL+ Bua
g 5 g * YBdy g Bk 2 u)dy

20 (u) fwé(wdw-2u e (u) [ é(w)dw
B »

22 [we (W) 3 w-"2u)dw - 4y [ & (W) & (w-v2u)dw
Y2y /2y

+

VZ [ we (wdw+2u [ ¢ (wdw
V2 Y2y

26 (1) & (W) - 2u @ (W) [1-9(w)]

+

22 [ wew) ¢ (w-"2u)dw - 4u [ é(w) & (w-/Zu)dw
Y2y Y2y

2§ (Y2u) + 2 [1-0 (V2u)].

(5.33)

To evaluate the integral

/
Y2y

one may use the fact that

(W) ¢ (w-v2p)dw

£, ) dy =1 - 6%

2

o—§

or using Eq. (5.32)

2000) [ & (ysw) dy + 2 [ + Y2u) e c—/E'J dy
0 0 2

Ly
/_

/_
—} w/2wdy = 1 - 02 ()

7 1,
" b5
or
20 (W) [ oW dw + 2 [o(w)e (w-VZu) dw
H /Zu
<~ [é W dw=1- az(u}
Y2
-ur

2 o) [1-2G)] + 2 [ ¢(W)e (w-YZy) dw
Y2y

S [-0(/A)] = 1 - 6% (w)
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or finally,

2 [ ¢(w) & (w-vZu)dw = 2 + 82() - 20(n) - & (VZu).

V2u (5.34)
The integral
I weo (W) o (w- Jﬁhjdw
Y2y
can be obtained as follows:
J wé ()& (w-/2u)dw = - ¢ (W) & (w-Y2)
Y2y 2u
6 W) b (w-/Zu)dw
/i-u -
=300 + [ 4 0 ¢ w-v/Tu)dw
2y
= % ¢ (020) + [ ¢ (2w-p) ¢ (w)dw
V2u
1 1
3 (2w) *72_ ¢ (1) £ ¢ (z)dz
1 1
=S¢ (20) +—=¢ ) [1-¢ W], (5.35)
‘ 2
Substituting Eqs. (5.34) and (5.35) in Eq. (5.33)
after simplifications one has
E(M,) =2¢ (W) -~ 2u [1-¢ (W] (5.36)

and in particular, for full regulation, w = 0 and

E(D ) = ¥2/n. Notice that E(D ) =2 E(D ) and thus
Fig. 5.4 holds, when the values of E(D ) are multi-

plied by two.

Recalling that the asymptotic mean maximum
deficit is proportional to vh, it is clear that the
fact that E{Dz} =2 E(D ) is simply a transient
effect.

For higher values of n (n = 3,4,...), the
problem is similar to the one encountered in the study
of the distribution of the range of partial sums: in-
tegrals which do not exist in closed formula will ap-
pear and will have to be evaluated numerically. Fol-
lowing the same reasoning exposed in Section IV 2.1,
this writer decided to approach numerically the entire
distribution of the maximum deficit, rather than to
solve numerically only parts of it.

The most convenient algorithm to this particular
numerical integration is to choose a binomial input
such as the one given by Eq. (4.24), for a large value
of m, and to apply Eq. (5.13) recursively. Notice
that the selection of m in the analogue discrete




distribution is tzntamount to the selection of the
increment Ay in a conventional numerical integration
algorithm.

The numerically obtained density function of Dn

is shown in Fig. 5.5 for small values of n and for
the case of full regulation (p = 0). In this fipgure,

fDn (Y) jl

20

30

0
fDn[y}h

as well as in the next ones, the probability mass at
Dn = 0 is not shown, and it is given in all cases by

[eq1".

Figure 5.6 compares the exact density func-
tion of [DnIVE] for n =8

and n = 30 with the

asymptotic density function, for the case of full reg-
ulation. Notice that Dn has been expressed in terms

4.0

50 6.0 70

L L
0] 2.0 30

Fig. 5.5. Distribution of D, for independent normal net inputs (p=0; n=1,2,...

1
20 5.0 6.0 7.0y

»7,8).

'}
.00
0.75F
=
= 5
@ " ':? "
Sos0f ¢ &
\O—Qc
0.25F
0O I 1 L 1 1 1 | -
O 05 10 1.5 20 2.5 3.0 35 yi/m

Fig. 5.6. Distribution of Dn/VH for independent normal net inputs (u=0; n=8,30,=).
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of /n to allow such comparison. Figure 5.7 compares

the standardized exact density of Dn (for n = 15

and p = 0) with the standardized asymptotic density.
Recall that the same comparison has been made in Chap-
ter IV, for the standardized distribution of the range
In the present case the convergence of the standard-
ized exact density to the standardized asymptotic

density is slower because of the influence of the
probability mass at D“ = 0.

The case of partial regulation is illustrated by
Fig. 5.8 for u = 1. Notice that Dn has not been

expressed in units of /n, indicating that the mean
maximum deficit does not increase as vn.

A
0.50}
.40}
£ 630
20.
-
[
2>
§ 020k
o.10F
0 L 1 1 L 1
30 0 ) 0 20 30 4.0
Op-E(Dp)

+ UAR{Dn}

Fig. 5.7. Distribution of [Dn-E{DnJ]/fﬁar(Dn) for independent normal net inputs (u=0; n=15 and n==).

fo, (V4

1.00

0.75}

0.50

25

Ns=
n?,OO

0.25f

1
(o} | 2

3

<Y

4 5 6

Fig. 5.8. Distribution of Dn for independent normal net inputs (u=1; n=25,50,100).
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Finally, the mean and the variance of D are and 5.10. Recall that the level of i
’ .10, regulati
shown for various values of n and yu, in Figs. 5.9 found by using Eqs. (5.8) and (5.9), ¥ R

E (D))
10.0

7.5

50

2.5
0 1 | il 1 | E——
0 10 20 30 40 50 n

Fig. 5.9. Expected value ot Dn for independent normal net inputs (u=0,1/4,1/2,1).

VAR(DD,) A
16.0

1201

40

pel
1 1

e 1
0 10 20 30 40 50 n

Fig. 5.10. Variance of Dn for independent normal net inputs (p=0,0.25,0.50,1.00).
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3.2 Laplace Distributed Net Inputs. Laplace
distributed net inputs are studied here because solu-
tions in closed form always exist.

In this case, the density function of the net
input is

£(x) = -gg e'2 |x-ul (5.37)
Notice that the mean net input is u and that

its variance is unity. In considering unit variance,
there is no loss of generality,

Using Eq. (5.29) for n =1,

 §
40y = J

-

fx)dx
=¥
= 3{—2_ [ e_/z_lx‘uldx ==

-2 (u+y)

nlSy

= g
2 e-/ﬁﬁ {m eJEkdx | (5.38)
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and thus the cumulative distribution function of the
maximum deficit is

- 1 _-V2(uy)
FDI(y) =l-5e 5

and the probability density function is

fD1 (y) = @ e~ V2 (uty), (5.39)
and the moments of Dl can be obtained as
EMD) =[yf o) dy= i—ge'@“ [ye™7 gy
0 1 0
& /TZ_ e'/i“, (5.40)

and

oo /—- = -/—
EOD = [y £ o) dy = 2P 2 o2
1 0

(5.41)

Some values of E(DI) and E{Df)
following tabulation:

are given in the

1} 0 1/2 1 3/2 2
E(Dll 0.3536 0.1743 0.0860 0.0424 0.0209
E{Df) 0.5000 0.2465 0.1216 0.0599 0.0296

Using Eq. (5.9) and assuming that the output is
constant and that the gross input (natural discharge)
has the coefficient of variation 0.25, the level of
regulation is 100% for p = 0, 87.5% for u = 0.5, 75%
for u =1, 62.5% for u = 1.5, and 50% for u = 2.

In this case, the relationship between the maximum
deficit and the level of regulation is shown in Fig.
5:11,

E{Dﬂli
0.4
\
\\
0.2 \
b S
L ~
~
““""‘-—.
0 1 1 gt -
|00 75 50 al%)

Fig. 5.11. Expected value of D, as a function of

1
the level of regulation for independent
Laplacian net inputs.

For higher values of n, Eqs. (5.27) and (5.28)
will be used:
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Similarly,
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Eq. (5.43) is valid for 0 ﬁ_vn £ P
For the case Vi Z M,
$o0 400
g BT D g AT oy,
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- % o/ 2H RV % o V% G} (5.44)

For n = 2, Eq. (5.29) reduces to
b4
dy(0,y) = d;(0,y) uy + 2(0,y) + g Lvy,y) £(-v)) dvy,

and now Eqs. (5.38), (5.42) and (5.43) can be used:
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and thus
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y
+£ J'e"/ﬂzl‘*)’} dv
% &
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d,00,y) = R i— o2(2usy) | —{—f)’ o~"2(2uty).
(5.45)

Consequently, the cumulative distribution
function of the maximum deficit is

(v} =1 - e_ﬁ(uﬂ") + zll.e"‘iz_(z‘\i*'}') _ 'V’Z- _e~v5[2p+y]

B

2 3’
and the density function is
£, ) = /5-6_/5(“+Y] - i? E'V* 2uty) % ye_JE[2“+y}.
2 2 2

Furthernore, the mean value of the maximum deficit is
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Notice that E(D,) = 2E(nl], which was also found

to be true in the case of normal inputs.

The second moment of the maximum deficit is

, = %
E(;) = [ 2y[1 - Fy (1dy = [ 2y dy(0,y)dy
Q 2 0 -
= % 5 2¢2 V2
2 e /2 [ve 2 Yay - %- Wt eV gy
0
_,{_Ee-szu [ 2 E—E Pap
&
0
= e_JEh - } 3-2/5u * % Q—EJEL = e‘r’:iJ + = e'qfﬁh

In the case of Laplacian inputs, Eq. (5.29) can
always be solved, leading to the exact distribution of
the maximum deficit, in closed form, for any value of
n. The integrals invelved can be easily, although
tediously, performed.

The case n = 3 will be studied now to show how
tedious the procedure is, and also to emphasize that
E[ES) is not equal to 3 - E(Dlj, as the reader may

be led to believe due to the fact that E(Dz) = 2+E(D
0Of course, E(Dn) could not be equal to n-E[DI], for

P

the asymptotic mean deficit was shown to vary as /n.

Using Eq. (5.29) for n = 3,
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* _[]; c{ 2(vy,y) £v,-vy) £(-v,) dvy dv,
(5.47)
where f(*) is the density function of the net input

and where the following expressions are known from
Eqs. (5.38), (5.42), (5.43), and (5.45):
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and the following expressions have to be evaluated:
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Using Eq. (5.42),

235 z%e-ﬁ(wy-ylj [z % e"EI"z"'l'"l ."El".’z'll]dvz] dv,

where, for VitHEY,

y - T - - - -
fe v’f|-v2 1 ule 72 | Y3 ul dvz
0
V,+u -
Y 2ty 2y av,
0

Y - ey, = -
of &2 Y2 dv,
Vite

2wy |} V2

Vit

(usv)) e 21 av,

V2,

ey 22 e2(2uv)) _{_:" e 202y-v))

and for et 8

y
g o 2Ivyvyoul o 72l-vyul dv, = ¥ o /20vyr2w) av,
0

iy e-v’z_(vl+2u)

and thus, for y > y,

y-u
-1 o2 (3u%y) { (v + _ff_‘) av,

1 |:1‘||r1

Y=u
%e-fz‘(msy) 17 o 2V7 v
0

-V2(3u+y) ¥
*‘}e (Suty I dv,
Y-u
S V2(By) 2, V2 - T |
g ° O+ 3 ys2uy-u- - i-u-j‘-)
1 -/2(ue3y)
*
and, for y <y
y - - -
I, = 1-.,’,5(‘”*)'\'1) TT e/f(vl+2u} -
2 0 4 1l

S eMIGeN Y g LY YT Guy)
4 1 4 s
0
Now, going back to Eq. (5.47), in the case y > u
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and in the case of y < u, similarly, one has

agom = e e G- L
2
s @ Byaly s
P %-9'25{“*7) (5.49)

and now the cumulative distribution function and the
probability density function can be obtained by

Fp ) = 1 - 4500
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£ () = o [F, (n)].
D3 dy D:,;

For instance, in the case of full regulation (u = 0),
Eq. (5.48) results

72 1.2, 2y A
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(5.50)

Notice that F (0) = ( ) , as it should.

(5.49)

1.
8
For a more general ver:.fn,atlon, consider Eq.
for y = 0.
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The mean value of D3 is, in general,

E(D,) = { [ - Fp ()1dy = {} dg(0,)dy.

Using Eqs. (5.48) and (5.49), one has
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After simplifications, one has
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(5.51)

and in particular, for w = 0,

32

35#2 43 -E{D)=--——-

E(D;) =

Some values of E{DSJ, from Eq. (5.51), are given in

the following tabulation:

" | 0 1/2 1 3/2 2

E(D;) | 1.0312 0.5103 0.2538 0.1260 0.0624
The change in the mean value of Dn as
increases can be better appreciated by computing
E(Dn)

E(, [u=0)

where E(Dn|u=0) is the mean value of D_ for the

case of full regulation.



In the following tabulation the expressions

E(D,)
(I) ——=— and (II)
E(D, [u=0)

E(03)

E(Dy|u=0)

are compared, using Eq. (5.40) and (5.51)

i 0 1/2 1 3/2 2

1.0000} 0.4929) 0.2432 IU.1199 0.0591
1.0000 | 0.4949) 0.2461 | 0.1222 } 0.0605

Expression I

Expression 11

Recall that for constant output and for a gross
input with the coefficient of variation equal to 0.25,
the values of p =0, 0.5, 1.0, 1.5 and 2.0 correspond
to o = 100.0, 87.5, 75.0, 62.5 and 50.0 percent.
Notice the drastic reduction in the mean maximum defi-
cit (and in practical terms, reduction in storage ca-
pacity required) when the level of regulation
decreases.

The objective of this section was to emphasize
that even when the net input is such that all inte-
grals involved can be easily performed, the analytical
solution to the problem still involves long and te-
dious algebraic transformations. Nevertheless deficit
analysis, as range analysis, is conceptually very
simple and numerical solutions can be very easily
found in all cases.

3.3 Closing Remarks. In this section, the
distribution of the maximum deficit for continuous in-
puts was derived, by analogy with the discrete inputs
problem.

Examples of application were given for normal and
Laplace inputs. Some results are in closed forms, and
others were obtained numerically. In this sense, sim-
ilarities between deficit analysis and range analysis
were stressed,

The asymptotic distribution of the maximum
deficit was derived in the case of full regulation and
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" a later chapter.

some exact densities were compared to the asymptotic
result, by standardization of variables.

In a later chapter, examples will be given in
order to assess the influence of skewness in deficit
analysis.

4. Summary

The main items discussed in this chapter can be
summarized as follows:

(i) General approach to the distribution of the
maximum deficit for independent discrete inputs
(Eq. (5.5)),

(ii) Derivation of asymptotic results (Section 2),

(iii) General approach to the distribution of the
maximum deficit for independent continuous inputs
(Eq. (5.29)), and

(iv) Illustration of convergence of exact results
to asymptotic ones.

. The influence of skewness will be illustrated in
It is important to notice that the
effects of nonnormal inputs are not only due to skew-
ness. For low levels of regulation and low values of
n, the effect of nonnormality of symmetric inputs can
be substantial. For instance, for u = 2 (say, 50%
regulation) and n = 2, the mean maximum accumulated
deficit for Laplace inputs (Eq. (5.46)) is almost 150
percent larger than the mean maximum deficit for nor-
mal inputs (Eq. (5.36)), and the skewness coefficient
is zero in both cases.

Finally, it is important to stress that the graph
obtained by plotting the mean net input (which is re-
lated to the level of regulation) against the mean
maximum deficit (say, storage capacity required) for a
given value of n, is simply the storage-yield rela-
tionship. Although the storage-yield curve is one
of the oldest concepts in water resources, this is the
first time in which this relationship was determined
exactly. Of course, depending upon the designer's
criterion, the storage capacity could be some quantile
in the cumulative distribution function of D_  rather
than the mean maximum deficit. B
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Chapter VI
RANGE AND DEFICIT ANALYSIS FOR CORRELATED INPUTS

In this chapter the .theory exposed before is
extended for the case of correlated inputs. Clearly,
once range and deficit analysis have been shown to
follow directly from the theory of Markov chains, the
generalization to correlated inputs is similar to
Lloyd's (1963) extension of Moran's work and conse-
quently the same limitations (drastic increase in the
size of matrices involved, for instance) are found
here. The theory can also be extended for seasonal
inputs. In this case, a different transition matrix
is considered for each season and the basic approach
remains unchanged. As a matter of fact, seasonality
is so easily taken into account in range and deficit
analysis that this writer will not elaborate on it at
this time,

1. Range Analvsis for Correlated Inputs

The assumption of independence of inputs has not
been made in the derivation of Eq. (4.9), and thus it

holds in general. Recall that Ain} is the sum of

all elements in the n-step "restricted" transition
matrix of size k. Also, recall that only in the case
of independent inputs this matrix is the n-th power
of the cne-step "restricted" transition matrix.

In this section, the case of Markovian inpyts is
considered and the procedure to be outlined can be
regarded as a numerical integration algorithm to
obtain the distribution of the range for the continuous
case of first order autoregressive inputs,

When the inputs follow o Markeov chain, the
distribution of the state of the system Yt depends

both on the previous state Y and the previous

t-1
net input Xe_p+ PBut X, , can be written as
{Yt_l_- Yt_Z) and thus the distribution of Yt
depends on Yt-l and Yo o The important point to

observe in this reasoning is that the net input is not
given by simple subtraction when the boundaries are
reached, but this does not affect the problem because
once one of the boundaries is reached, the system
remains at the corresponding absorbing state with
probability one.

Consequently the solution of the problem involves
the consideration of two-step Markov chain, as
described in Section III-1.3, in the case when the
boundaries are absorbing. Referring to Eq. (3.17)
and (3.18), the elements of the matrix A are
a(ij|jk) and when neither j nor k are absorbing
states, the elements in the column (j,k) constitute
simply the distribution of the net input X_ given

t
that Kt-l = j-k.

For illustration purposes, the simple dependent
(-1, +1) process will be studied, and it will become
apparent that even a process as simple as this one can
lead to important and relevant practical conclusions.
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Consider the process characterized by the
following marginal distribution:

I‘(.‘(t = +]) = P(Xt = -1) =1/2 (6.1)
and by the following conditional distribution:

P(X, = +1|>ct_l = 4l) = PN = SL]X, o= -1)
P(X, = +1[>:t_1 = -1) = P(X, -I[Xt_l = +1) = q (6.2)
where

p+q-=1.

Notice that E{Xt] =0, var [XtJ = 1 and
cov(xt, Kt-I] =p = p-q = 2p -1 (6.3)

where p stands for the lag-onc cocfficient of
correlation.

Now consider a system with state space {0, 1, 2,
3, 4} where 0 and 4 are absorbing states, Using the
notation introduced in Section 111-1.3, it 1s clear

that if the initial state is, say, Yy < L then the

joint distribution of the puir Y, —and Y, is

61 = £5,(0,00... &

1 {(0,4) al{l,U}...ﬁI(!,4]

|
........ 61(4,0}...ﬁ]L4.4]i

where 61{1,3 and 51{3,3) are equal to 1/2 and

all other dl(i,j} are equal to zuro.

The joint distribution of Y, and Yl is

given by Eq. (3.18):
6, = A& (6.4)

where A 1is a square matrix of size 25 such that

a(0,0[0,0) = a(0,0]/0,1) = a(4,4]4,3) = a(4,4[4,3) =1
a(0,1]1,2) = a(1,2]2,3) = a(5,2{2,1) = a(4,3[3,2) = p
a(l,2|2,1) = a(2,1]1,2) = a(2,3]3,2) = a(3,2|2,3) = q

and all other a(ij|jk) are equal to zero. The
reader may find it necessary to write Jdown the entire
matrix as explained in Scction III-1.3, to fully
understand the reasoning.

Fortunately the vector 6t and the matrix A

can be simplified by climination of the impossible
transitions, and Cq. (6.4) can be rewritten as



5,(0,0) (I-I 000000 0 ['0
62(0,1) 00p0O00DOO 0 p/2
6,(1,2) 000qpooO 1/2 0
6,%[6,(2,1)] =|00q00000]|-| 0 |=]q/2] (6.5
§,(2,3) 00000q00 0 q/2
§,(3,2) 000pqDO0O 1/2 0
§,(4,3) 00000po0O 0 p/2
62(4,4) 00000011 0 0
- - — -_— . —

Now the distribution of Ys given Y, =2 can

be_obtained using Egqs. (6.2) and (6.5). Notice that
this result is simply the three-step transition proba-

bilities q*)(i,2) for i =0, 1, 2, 3, 4:

a® 0,2y = P(Yy = 0]Yy = 2) = 6,(0,0) + 6,(0,1)
+pr8,(1,2) = p/2
a®1,2) = prg = 10Y, = 2) = qe8,2,1)
+ p°6,(2,3) = q/2
a® 2,2 - P(Y; = 2|Yy = 2) = q+6,(1,2)
+q6,(3,2) = 0 (6.6)
a® (3,2 = pey, = 31Yy = 2) = pe6,(2,1)
+ q-62(2,3} = q/2
qts)(4.2] = P(Yy = 4|YU = 2) = pe6,(3,2)
+6,(4,3) + 6,(4,8) = p/2
Eqs. (6.6) can be written in matrix notatiom, as
follows __ — < . _
§,(0,0)
(3) 2
q (0,2) 11p000OO 52{0,1)
a®a,2) 0oo0ogpooof |82
5,(2,1)
(3)
Q2,2 =|o0aq00qoo|-[6,023
(3) 5,323
q "7 (3,2) 000pq000D 5,(4,3)
q(z){4,2) 00000p11 52(4,4)
or, by using Eq. (6.5): -0 ]
4™ 0,2) 11p00000 0
aPa,2] looogpooo 1/2
a2l =looqooqoo|- a +| o0 (6.7)
q{S}{S.ZJ 0.0 0pgq0O00O 0
aMa,nl looooopit 1/2
- et L —
0
0
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Equation (6.7) represents one column (the third)

in the three-step transition matrix Q'(SJ.

; A similar
reasoning leads to the other four columns of this
matrix:

F: c 0 0 0
11p00000] 01/2 0 0 of
000qp0OO 0 0 1/20 0

™ <looqooqoof-ado1/2 0 0 of (6.8
000pq000 00 o01/20
00000DpP11 0 0 1/20 0

- ~ 00 01/20
0 0 0 0 1
The three-step "restricted“_;atrix Q(S) :;n be

.obtained by deleting the first and last rows and

columns of Q'(S}:

(-b 0 0-
1/2 0 0
000qpo0OOOD 0 1/2 0
Q(s) =|00q00q0O0f+«A-1/2 0 0 (6.9)
000pq000 0 01/2
B 1720
0 01/2
0 0 0

For general n > 2 the n-step "restricted"
transition matrix is given also by Eq. (6.9), pro-

vided A is substituted by A™2,

Recall that Eq. (6.9) corresponds to the case
when the state space is {0,1,2,3,4}. For the general
case of state space {0,1,2,...,k,k+1}, the matrix

n a =
Q( ) would have size k and the matrix A would
have size 2k+2. For instance, for k = 5,
— =3
0 0 0 0 o0
1/2 0 0 0 o
0120 0 0
— -
00 0qpO0©0O0O0OCOO /2 0 0 0 0
0 0 q00gp0O0O0O0TOO 0.0 1/2 0 0
Q™o o o P qQO00gqp 000 A200 12 0 0 o
00 00O0PpPSGQqQOGODSGQ?DOO 0 0 o0 1/2 0
0 00D0O0CO® PGQGDOD OO 0 0 1/2 0 ©
B - 0 0 0 0 1/2
0 0 o0 1z 0
0o 0 0 0 1/2

(6.10)




and

—1100000'00000
0o 0oploo oo ooloo o
0 00/lqp 00 00|00 0
0o 0qlooloolooloo o
0 0 6|0 0|l q p i 0 0 ; € B n

A={o o of{palooiooloo o (6.11)
oooocooiqp;ooo
0 00/00|pgqi0 0|00 0
noonoonluo!qoo
0 00l00 00 paqloo 0
090'000000];;00
noo|000000|011

where lines have been drawn to emphasize that the
matrix is obviously patterned. (n)
To use Eq. (4.9), the quantity Ak

Recalling that Ak[n) = }T Qén}_i and using Eq. (6.10),
one has, for k = 5:

is needed.

WM = [00q111111q00]-A"2 (6.12)

1/2
1/2
1/2
LA

Using the fact that the elements in the columns

of the matrix Q‘(n} add to unity, it can be shown
that Eq. (6.12) can be rewritten as

-
1/2
1/
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
0

A

Aé”] =5-[1L1p0000OOPIL 1]-A""% (6.13)

—
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or, equivalently, for general Kk,
F‘u i
() n-2
Ak =k-[11p0...0p1I1]A" "+ [1/2 (6.14)
1/2
0
where A 1is a square matrix of size 2k+2.

Using Eq. (4.9) and (6.14), the probability
density function of the range was computed for n
and n 100 and for p = 0.50 (p=0), p = 0.60
(p=0.20), and p 0.75 (p=0.50). The results are
shown in Fig. 6.1.
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Figure 6.2 indicates that for large values of n
the exact distribution of the standardized range of
partial sums of Markovian inputs tends to the asymp-
totic distribution of the standardized range, found by
Feller (1951).

Obviously, the moments of the range can also be
obtained numerically. In particular, the mean is

given by Eq. (4.12), where K 1is a large number. Ap-

plying Eqs. (4.12) and (6.14), it is readily seen that
=
0
1/2
n-2
ER)=[11p0...0p11J-A""% (6.15)
1/2
0
where A 1is a square matrix of size 2K+2.
Figure 6.3 shows the values of E(an given by
Eq. (6.15) for various values of p and n. For

large n, these results are approximations of the con-
tinuous case of the first order autoregressive process
This figure illustrates the known fact that the square-
root law prevails asymptotically for summands of any
sequence of random variables subjected to the central
limit theorem, and confirms a conjecture of Yevjevich
(1967), namely, that the following relationship holds
asymptotically:

ER) = /3. /10 ;9 5058 /0
n E 1-p

Equation (6.16) is formally derived in Appendix A.

L+p

i (6.16)

The main contribution of Fig. 6.5, however, is to
illustrate the drastic increase with p in the size
of the transient region.

2.  Adjusted Range Analysis for Correlated Inputs

In this section Hurst's (1951) idea of studying
the mean unadjusted range conditioned to the last par-
tial sum being equal to zero is extended for correlated
inputs.
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Fig. 6.3, Expected value of R

for the dependent
(-1,+1) process.

Consider a system with state space

such that states 0 and k+l

Let qin] (u,u) denote the probability of a transi-

tion from state u = 1,2,...,k to the same state u.
Obviously this implies that the boundaries (absorbing
states) have not been reached. But this is simply the
joint probability PM <k - u,fm | <u -1, §,=0).

{0,1,...,k+1}
are absorbing states.

Using the same reasoning that led to Eq. (4.7), one
has
PO, = k-u,fm | = w1, 5 = 0) = ™ (uu)
- oM@ - q® @-1,0-1) + o -1,u-1)
and then
k
PR, = k-1, § =0 = uzl PM, = k-u,|m | = u-1,5 =0)
k k-1 k
) q{n) (w,u) - § q(n)(u:U} -1 ‘IU}}(“‘L‘"”
=y, ® e w2 1
k-1
s Ta®) @1,u1)
u=2
k k-1 k-2
=3 aMew-27 o™ @w + § o™ @
w1 ¥ jimg R-R usl, ¥

where special attention should be paid to the fact
that the adjustment in the values of u in the above

summations is valid. Furthermore, notice that %
u=1
q§n} (u,u) is simply the trace (sum of elements of the

principal diagonal) of the n-step transition matrix.
Using an obvious notation, one has

k-1, 8 = 0) = o™ -2, , @)

p(Rn = n k-2
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or, equivalently,

" -0y = @) (n
PR, = k,S, = 0) = vl - 2y ) . "1?-11
and finally,
PR_=k|S =0) = [u]EEi -2 4 \:]Elji]fP(Sn - 0)
(6.17)

Notice that independence of inputs has not been
assumed and thus Eq. (6.17) holds in general. Follow-
ing the reasoning that led to Eq. (4.12), it can be
shown that

o B (n) =
E(Rnlsn =0) = K- [v'/P(S =0)] (6.18)

where K 1is a sufficiently large number so that

PR, < 1<|sn =0) = 1

In the case of the dependent (-1,+1) process
defined by Eqs. (6.1) and (6.2), the n-step 're-
stricted" transition matrix (and thus, its trace) can
be obtained as shown in the previous section. To use
Eq. (6.18), P(S“=G] has to be evaluated for the pro-

cess defined by Eqs. (6.1) and (6.2). Following
Gabriel (1959), it can be shown that for n even,
n-1 j
¥ n-1 . (1P
P(5,=0) = P R ot ( p)
=i (BE) e e
(6.19)

where [-] denotes the integer part of the argument.

Now Eq. (6.18) can be used. -Values of
E{Rn|5n = 0) were determined for various combinations

of n and p = 2p-1 and the results are shown in
Fig. 6.4. This figure indicates that the following
relationship holds asymptotically:
i o i 1% ! e 2 i 1+p
ER IS =0) = /5 /3%s1.255 Vi v
(6.20)
and illustrates the drastic increase with p in the

size of the transient region.
derived in Appendix A.
E(Ry|Sp=0)

1000

Eq. (6.20) is formally

-1 -
| 2533/ V“'I'_'-&
=

100

i ) ico 500 6000 "
6.4. Expected value of [Rn|5n=03 for the

(e}
Fig.

dependent (-1,+1) process.



The argument that variables that ultimately
follow the square-root law may behave as higher powers
of n in a pre-asymptotic sense was initially made by
Lloyd (1967), reasoning with independent random vari-
ables. For dependent random variables, Fig. 6.4 indi-
cates that this argument is much stronger than initial-
ly thought.

The results obtained from Eq. (6.18) for
p=1/2 (p = 0) agree exactly with Hurst's original
result. This can be verified analytically: for inde-
pendent inputs, the n-step "restricted" transition
matrix is simply the n+<th power of the following matrix

o 12 o . . . 0 0 O
/2 0 1/2 . .+« 0 0 0
o 12 o . . . 0 0 O
0 0 0o . . . 0 1/2 0
0 0 0 & 1/2 0 1/2
0 0 0 = = 0 1/2 0

which can be found using the method of images. In
particular, the elements in the principal diagonal of
the n-step "restricted" transition matrix are given by
Eq. (3.23), for s = u:

+m
o™ @) = 5 (v, (23K 4u,0) - v (25(KeD) - uw]
J:-u F 5%
g:ing the fact that vn(t,r] = nc(n-r+t]/2(1/2)n’ one
() (4,u) = 3 2™ [.c \
Sl joe n”(n+2j (K+1))/2

'nc(n+2j[K+1]-2u)/2] . (6.21)

But K is a very large number and thus the first term
in the right hand side (RHS) of Eq. (6.21) is nonzero
only when j = 0 and the second term in the RHS of

this equation is nonzero only when j = 0 and j =1
Consequently, Eq. (6.21) can be rewritten as

(n) ! n
A @) = (W/2LC s = (Cikel - usn/2) " 0 (-usn/2)]
and thus
K
(m) (n)
v = ¢ q (u,u)
E S %

n
/2" K= nCora

K
] _
/2" % [ (ka1 -uen/2) * o (-uen/2)!

n n
(/2)" K= Cyp = [1 - @/2)7+ C )]
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or

W = 1) €, 2" -1 (6.22)

For p = 1/2, Eq. (6.19) reduces to the known result

S0 n
P(S, = 0) = c (/2" (6.23)

Substituting Eqs. (6.22) and (6.23) in Eq. (6.18), one
has

(x+1) C_,. (/2" - 1 n
ER_[S, = 0) = K - nn/2 -l

B a/)" n°n/2

which is Hurst's original result. Notice that n has
to be even, so that Sn can be equal to zero. Using

Sterling approximation, it is easily seen that

=0y /.
ER IS, =0y = /5~ 1.

3. Deficit Analysis for Correlated Inputs

In Chapter V it was shown that P[Dn > k) 1is

simply the probability that the system is at (absorb-
ing) state 0, at time n, given that the system was at
(reflecting) state k+1 at time zero. In this sec-
tion this reasoning is applied to the dependent (-1,+])
process defined by Eq. (6.1) and (6.2). As in the
previous sections, the problem can be solved by con-
sidering a two-step Markov chain, now with one absorb-
ing and one reflecting boundary.

Consider a system with state space {0,1,...,k,
k+1} such that state 0 is absorbing and state k+1
is reflecting. For simplicity, consider the case k=5.

If the initial state YO is k+l, clearly the joint

distribution of the pair Yl and Y0 is

T
ﬁi = {51(0,0) 61(0,1) 61(1,2) 61(2,1) 61(2,3) 61(3,2)

6,(3,4) 6,(4,3) 6,(4,5) & (5,4) 6,(5,6) §,(6,5)

§,(6,6)}

where the impossible transitions have been deleted and
where 61{6,6) =1/2, 61(5,6) = 1/2 and all other

ﬁl(i,j) are equal to zero.

Using Eq. (3.17), the joint distribution of the

pair Yn_z and Yn-l is

(6.24)

where the matrix A is shown by Eq. (6.25). Notice
that lines have been drawn to emphasize the obvious
pattern of this matrix.
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(6.25)
Using Eqs. (6.24) and (6.2), it is readily seen
that the probability that the system is at state 0 at
time n given that it was at state k+1 at time zero
(i.e., the probability that Dn is larger than k) is

P, >K) =6 (0,00 + 6 ,(0,1) + & ,(1,2)

or, equivalently,

1.00
=
P
S
% 0.50
“_D
%
1.00
=
-3
=
'S
;; 0.50
% |

1
2
Distribution of Dn//ﬁ

3

for Markovian inputs (p=0,0.
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61
0
PO, >k =[1 1 p 0 B L (6.26)
1/2
0
1/2
where A is a square matrix of size 2k+3.
Using Eq. (6.26), the distribution of Dn was

obtained for the cases n = 50 (p = 0.50, p = 0.60,
p=0.75) and n = 100 (p = 0.50, p = 0.60, p = 0.75)
The results are shown in Fig. 6.5, and they can be con-
sidered numerically obtained solution for the distri-
bution of the maximum accumulated deficit of normal
autoregressive processes (first order) when the lag one
coefficient of correlation is p = 0 (p = 0.5), p=0Q20
(p=0.60) and p = 0.50 (p = 0.75). Figure 6.6 in-
dicates that for large values of n the standardized
distribution of the maximum deficit for Markovian in-
puts tends to the asymptotic result derived in Section
V. 2.1. Finally, Fig. 6.7 shows the expected value of
Dn for various combinations of n and p and for

mean net input u = 0 (full regulation). Notice the
similarity between the results for u = 0 and
E(Rn|Sn = 0) (Fig. 6.4). Similar results can be ob-

tained for the case of partial regulation.
4.  Summary

In this chapter, range and deficit analysis were
extended to the case of correlated inputs. Even

-

B 6 i/
! =
4 5 6 xi/m

20,0.50; n=50 and n=100).



though the simplest possible case (the dependent state is reached and the system continues at this
(-1,+1) process) was used for illustration, the results state in the next unit of time, the net input is un-

led to important practical conclusions. known and a bivariate Markov chain rather than a two-
' step Markov chain has to be considered, The solution
A final remark is in ordetr, having to do with is practically the same, the only difference being
deficit analysis when the input can assume more than that for bivariate Markov chains none of the entries in
two positive values. In this case, when the reflecting the transition matrix A are identically equal to zero.
A
0.50
0.40}-
=
8
20.30F
=2
i
Fog
2
L -
£0.20
0.10F
ol—t 1 1 I 1
=20 -10 0] 1.0 2.0 3.0 4.0

Dy-E(Dy)
VVARD,)

Fig. 6.6. Distribution of [Dn—E(Dn)]/Var(Dn) for Markovian inputs [(n=100; p=0.50) and(n==; p=0)].
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Fig. 6.7. Expected value of Dn for the dependent (-1,+1) process (u=0).

68




Chapter VII
APPLICATIONS TO PRACTICAL HYDROLOGY

Is Range Analysis

Using the procedure described in previous
chapters, the distribution of the range can be found,
at least numerically, for a wide variety of cases of
practical importance. Engineers who use the range as
design criterion for the case of full regulation can
now design for quantiles (say, the value Tt such that
P(Rrl <r) =q where q is a probability level chosen

by the designer) rather than design only for the ex-
pected value.

For large values of n
distribution of Rn

the asymptotic
(Feller, 1951), corrected for the

first two moments, can be used as an approximation to
the exact distribution of Rn even when the inputs

are Markovian. This conclusion emphasizes the rele-
vance of previous studies in range analysis, which

concentrated on approximate expressions of the first
two moments of Rn for correlated inputs (Yevjevich,

1967; Salas La-Cruz, 1972).

2. Adjusted Range Analysis

In this section, E(Rnlsn = () is assumed to be
an approximation of E(R;/S], following Hurst (1951).

Suppose that onc has a large number of time
series relative to Gaussion-Markovian models with var-
ious degrees of correclation. In the case of first
order Markov processes, the obscrved values of (R;/S}

will fall around their cxpected values, approximated
by the family of curves shown in Fig. 7.1, and a simi-
lar behavior may be anticipated for higher order
models. When one considers the totality of observed

values {R;/S], regardless of the Jdegree of correla-

tion of the underlying process, a straight line pass-
ing through the point A (R;fs = 1, n=2) with

slope 0.75 will apparently fit well all the points,
simply because this straight line fits rcasonably well

the family of curves of expected values. In particu-
lar notice that the two lines connecting point A to
points B and C have slopes equal to 1.00 und (.50,
respectively, and the whole region where the pairs

{R;/S, n), are expected to fall is bounded by those

lines. Thus, it can be expected that for this hypo-
thetical large number of Gaussian-Markovian time
series one would find a frequency distribution of the
slope K similar to the one found by Ilurst, which is

reproduced in Fig. 7.2.

E(R,|S,=0)
or
E(Rp/S)
1000
}/’K:I.OO

100

10

|
0. =
| 10 100 1000 10,000 n

Fig. 7.1. Expected values of (R [S =0) for the dependent (=1,+1)

process (curves) as cﬂmpﬂred to Hurst's empirical law
E(R;/s}a(n/Z)K for K=0.50,0.75,1.00 (straight lines).
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Fig. 7.2 Frequency distribution of the index K

In Fig. 7.3., the family of curves E(Rnlsn = 0)

is compared with Hurst's data (Table 7 in his paper).
Notice that the objective here is not to claim that
Hurst's data corresponds specifically to first order
autoregressive processes, but rather to emphasize that
due to the drastic increase with p in the size of the

transient region, one may easily confound an apparent,

pre-asymptotic departure from the square root law with
a definitive, asymptotic departure.

Another example of possible confusion between
pre-asymptotic behavior and actual behavior will be
given. Mandelbrot and Wallis (1969b) used, among
other time series, the data from the St., Lawrence
River (Yevjevich, 1963) to argue that the rescaled

and thus

that "for practical purposes, geophysical records
must be considered to have an 'infinite' span of

range R;/S increases faster than nO.S

statistical interdependence." The interesting point
is that the same data have been studied by Yevjevich
(1963), who concluded that a simple first-order auto-
regressive model fitted this particular data well.
Depending on the estimation procedure the lag one co-
efficient of correlation could be estimated by 0.705
or 0.785. In Fig. 7.4 the exact values of E{R“|Sn=0)

for the dependent (-1,+1) process with p = 0.75 are
compared to a straight line with slope equal to 0,90
for n < 100. Clearly, the fact that the data from the
St. Lawrence River (n < 100) shows a slope close to
0.90, cannot be regarded as conclusive evidence of de-
parture from the square root law in an asymptotic
sense.

3. Deficit Analysis

The immediate application of deficit analysis is
in the determination of the exact storage-yield rela-
tionship. This relationship is obtained by plotting
values of the storage required against the correspond-
ing level of regulation. Using the procedure outlined
in Chapter V, the distribution of the maximum deficit
can be found, at least numerically, for a variety of
cases of practical importance. The extension to the
case of correlated inputs, presented in Chapter VI,
has limitations, but at least indications of the ef-
fect of correlation on the maximum deficit can be
found.

For completeness, a simple example will be given,
having to do with the influence of skewness on the ex-
pected value of the maximum deficit Dn. Assume that

the natural discharge can be approximated by a nega-
tive binomial distribution:

L2533Jﬁ,\/%p

Ean Sn=0) |
or
R:/S 1000
100

OJI 10

100 1000

10,000 n

Fig. 7.3. Expected values of (R [Sn-O} for the dependent (-1,+1) process (curves)
as compared to Hurst's sample values of R;/s (points).
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Fig. 7.4 Apparent slope of E(Rn|5n=u)
for p=0.75 and n<100.

P[Zt = i) A =0,1,2,:44)

r i
® (r+i-1)%°P 4
It is well known that for this distribution
E(Z,) = ra/p,
" 2
Var(z,) = ra/p°,
and ) 3
3
E[(Zt - E(Z,)) 1 = rq(1+q)/p" .
and thus
3
B[z, - EG)] o,

varz)1¥? Ve

Cy (7.1)

For p=q=1/2 and r=2, one has

E{Zt)-z " Var(zt)=4 and CV-I.S =

and the following cases of net input can be considered
i) X ,=(Z_-2)/2; thus, E(X_)=0, var (X, )=1 and
t t t t
CV'I'S'
ii) It={2f—1]/2; thus, E(Xt]=1/2, Var(xt)=l and

CV'I.S.

The values of E{Dn} were obtained for both

cases, for n=1,2,...,10 and the results were com-
pared with E(Dn] for normal inputs. This is shown

in Fig. 7.5. As expected, the influence of skewness
for the case of full regulation is less strong than in
the case of partial regulation. Furthermore, one

E (D)
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3.0}
.""l

20

10 mn

Fig. 7.5.

Influence of skewness on the expected
maximum accumulated deficit.

cannot ''a priori" state whether skewed inputs will
lead to larger or smaller values of E(Dn). Notice

that CV = 1.5
discharges.

is relatively high for river

In the case of partial regulation, some doubt can
be cast on comparisons like the one shown in Fig. 7.5,
for even though the new input has mean 1/2 and unit
variance for both the negative binomial and the normal
input, they may or may not correspond to different
levels of regulation. In the case of the above
example, the coefficient of variation of Zt was

equal to one and thus, for u =1, Dn is identically

equal to zero, The same difficulty arises when
studying exponentially distributed inputs, which was
done in terms of range analysis only. In summary, the
reader should keep in mind that comparisons of this
type are dangerous, and that for low levels of regula-
tion, each case is a special case.

4. Summary

In this chapter the application of range and
deficit analysis to the design of storage capacities
was discussed. Of course, range analysis applies to
both full and partial regulation cases. One may argue
that deficit analysis should be used in all cases, for
the sake of consistency and uniformity of criteria.

The main section of this chapter dealt
exclusively with the so-called Hurst phenomenon. The
exact values of E(R_|S = 0) for the dependent (-1,
+1) process were comBargd with actual data, to argue
once more that short memeory models do produce "Hurst-
like sequences." This same conclusion was reached by
Matalas and Huzzen (1967), who used the Monte-Carlo
method and generated a large number of sequences fol-
lowing a first order autoregressive model.
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Chapter VIII
SUMMARY AND CONCLUSIONS

The main objective of this study was to
investigate two properties of the partial sums of ran-
dom variables: the range and the maximum accumulated
deficit. The range Rn or the adjusted range Rﬁ

are used by some engineers in the design of storage
capacities for full regulation of river discharges
(Salas La-Cruz, 1972; Hurst, 1951; Fiering, 1965). The
maximum accumulated deficit Dn is used in the case

of partial regulation (Hurst, 1951; Fiering, 1965).

In this paper a general approach to the
distribution of the range of partial sums of indepen-
dent random variables was developed. Starting with
discrete random variables, the distribution of the
range was shown to follow from the theory of Markov
chains, when the state space contains two and only two
absorbing states (the boundary states). By analogy,
the distribution of the range for the case of inde-
pendent continuous random variables was easily ob-
tained. Several examples of application of the gener-
al formulae to particular probability distributions
were given. Some results were obtained in closed form
and others were obtained numerically. In the case of
continuous random variables such that the solution is
necessarily numerical, it was argued that the most
efficient approach consists of two steps: i) discre-
tization of the input and ii) application of the gen-
eral procedure for discrete random variables.

For each type of input considered, the exact
distribution for finite values of n were compared to
the asymptotic result found by Feller (1951), either
by standardization or by considering the variable
Rn//;l The conclusion was that the asymptotic result,

when corrected for the first two moments, is a good
approximation of the exact distribution, even for low
values of n. Other conclusions, such as the relative
lack of importance of skewness and other departures
from normality were previously known from simulation
studies (Yevjevich, 1965).

The specific contribution of this paper to range
analysis is that by using the approach described, the
distribution of the range, and consequently its mo-
ments, can be obtained (at least numerically) for a
wide variety of cases of practical interest. This is
important because it allows engineers to use criteria
other than the mean range (quantiles, for instance) in
the design of storage capacities.

In another chapter of this paper, a general
approach to the distribution of the maximum accumu-
lated deficit Dn was described. Starting with in-

dependent discrete random variables, the distribution
of Dn was shown to follow from the theory of Markov

chains, when the state space is such that one boundary
is absorbing and the other is reflecting. By analogy,
the distribution of the maximum deficit Dn for the

case of independent continuous random variables was
obtained. Some examples of application were also
given and again the solution of the continuous case
by discretization was argued to be the most efficient.
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The asymptotic distribution of Dn for the case

of mean net input with expectation zero was derived
and compared to results for finite values of n. The
conclusion was that the asymptotic result, when cor-
rected for the first two moments, is a good
approximation of the exact distribution, for
moderately large values of n 1is the existence of
probability masses at the point Dn = 0, for finite

values of n. Some conclusions, like the drastic re-
duction in storage capacity required when the level of
regulation decreases, and the fact that this reduction
depends on the value of n (indicating that Hurst's
empirical formulae (Eq. 2.25) and (2.26)) are not ade-
quate), were previously known from simulation studies
(Fiering, 1965). A new conclusion is that departures
from normality in general and skewness in particular
may have strong influence, for low values of n and
low levels of regulation.

* The specific contribution of this paper to

deficit analysis is that, by applying the approach de-
veloped, the distribution of Dn' and consequently its

moments, can be obtained (at least numerically) for a
wide variety of cases of practical interest. This is
important because it allows the exact determination of
the storage-yield relationship, one of the oldest con-
cepts in water resources engineering.

The analogies between deficit and range analysis
and Moran's theory of reservoirs were also pointed out
In so doing, the extension of the theory exposed to
the case of seasonal inputs was merely mentioned and
the extension to correlated inputs was made for very
simple cases. The same limitation found by Lloyd,
namely, the drastic increase in the size of the ma-
trices involved, was present here. However, even
though only a very simple discrete correlated input
was considered, the analysis led to important practi-
cal conclusions: i) the asymptotic distributions of

Rn and Dn' when corrected for the first two moments,

are good approximations of the exact distributions of

Rn and D, even for Markovian inputs, ii) the

square root law for the mean range holds asymptotical-
ly (this.was previously known) but the size of the
transient region (the region where the mean range
behaves as higher powers of n) increases drastically
with the degree of serial correlation, and iii) for
the case of inputs following a simple Markov chain, the

effect of correlation is to increase the storage ca-

pacity required by a factor smaller than v (1l+pg)/(1-p).
In particular, Hurst's idea of approximating the

rescaled range R;* = (R;/S) by the unadjusted range

conditioned to the last partial sum being equal to
zero (Rnlsn = 0) was extended to the case of inputs

following a Markov chain, and the drastic increase in
the size of the transient region (found before for the
unadjusted unconditioned range) was noted. These re-
sults were compared to Hurst's results and the con-
clusion was that one can question the statement made
by some authors (Mandelbrot and Wallis, 1969, and
others) to the effect that short memory models fail te
reproduce some drought characteristics.
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APPENDIX A

In this Appendix, an alternative expression for
the mean conditioned range of partial sums of Markov-
ian inputs (see Eq. (6.1) and (6.2) in the text) is
derived, and some asymptotic results are formally ob-
tained (see Eqs. (6.16) and (6.19) in the text).

A.l. The Mean Conditioned Range.

The mean conditioned range is twice the mean
conditioned maximum partial sum, which can be obtained
by using the tail of its cumulative distribution
function:

-
E(Rnlsn 0) = ZE[Mn|Sn 0) = 2 hEUP[Mn>h|Sn-0]

=2 hzﬂ P[M_>h; S _=0]/P[S_=0].
(A.1)

To state the M“ is larger than h and Sn is

equal to zero is equivalent to say that there exists
an epoch m such that the sum of the inputs Xl,X?...,

Xm equals h+1 for the first time (let us denote

such an event by Sél)) and that the sum of the re-
maining inputs xm+l.xm+2,...,xn equals -h-1.
that sM=he1 implies that X,=+1, and thus,

Note

8% t=n
P[M >h;S =0] = £ P[(S' “=h+1; L
n n 5 m

X,=-h-1)| X =+1].
t=m+1 £ L

(A.2)

Using Eq. (6.2), one has

t=n t=n

P[ £ xt=-h-1]xm=+1] = q-P[ I

X, =-h|X_ .=-1]
t=m+]l t=m+2 t m+1

t=n
pP[ I
t=m+2

+

xt--h-ztxm+1-+1]

t=n
QP[ :
t=m+2

X =+h|X_, =+1]

t=n
p-P[ E
t=m+2

+

xt--h-zlxm*l=-1].

Using this result recursively, one has

- t=n t=n
P[ T X =-h-1|X =+1] = q-P[ I
t=m+1 t=m+2

xt=+hlxm+l=+1]

t=n
+ peq+P[ I X =+hel]X _=+1]
wonid t m+2
2 t=n |
+ p qP[ E X =+h+2|X =+1]
tem+d © e
3 t=n |
pgP[ I X =+th+3|X =+l
t=m+5 $ wrd

+

(A.3)

where only finitely many nonzero terms exist.
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From Eqs. (A.2) and (A.3), one has

t=n
L

X, =+h) [X_  =+1]
tame2 t m+1

-5 =0] = . M.,
P[Mnbh,sn 0] i {q P{(Sm h+l;
+ P'Q‘P[(S£1)=h+1; t;“ Xt'h+l}|xm+2-+1]

t=m+3
t=n I
I X =he2)|X  .=+1]
t=m+4 © m+3

¢ pa-pl(s{M=her;

+ .,.} .

i The general term in Eq. (A.4) (i.e., the term
LpqP[+]) involves the probability of the event
m

(A.4)

for the first
inputs add to h+i
+1) for all possible

that the first m inputs add to h+l
time and that the last n-m-i-l

(given that xm*l*i is equal to

values of m. But this is simply the probability of
the event that n-i-1 inputs add to 2h+i+l, and thus
the general term in Eq. (A.4) can be written as

i = +
P vq-P[Sn_i_l = 2h+l+i].

Now Eq. (A.4) can be simplified to

s T ;
PDM,his, 0] < P Ips, ;= 2h+i]. (A.5)

Using Eqs. (A.1) and (A.5), one has
= 4 i
E(Rnlsn-o) = zqiil P P[S,_;2i1/P(S =0]. (A.6)

Equation (A.6) is an alternative expression for
the mean conditioned range, given before hy the more
general result from Eq. (6.18). In order to use
Eq. (A.6), the value of P[Stsj] is neceded, for gener-

al t and j.
Gabriel (1959).
Eq. (6.19).

This result is known and due to
In particular, P[5n=u] is given by

A.2. The Asymptotic Mean Conditioncd Range.

To derive asymptotic results, the fact that

t

St = I Xi is asymptotically normally distributed
i=1

with mean zero and variance

rewrite Eq. (A.6) as

tp/q can be used to

E(R_1S,=0) = 2q & p' ([~ (i-1)1/[(n-1)p/m1° *}/P (5 =0).
i=1
(A.7)
Let i* be a large number such that pi* * 0
and let i‘/(ﬂ'i*)o's = 0.
Then o([-(i-1))/[(1-0)p/a)°"®} = 0) = 1 for a1

values of

n be still larger, so that

i<i*, and Eq. (A.7) reduces to

¥ .
i=1
E(R IS =0) = q iE P /P[S =0 = 1/P[S =0]

& (A.8)



where P[S,=0] is given by Eq. (6.19); for large
values of n, it can be shown that Eq. (6.19) can be
approximately written as

PIs,=0] = (m/2)™" /)0, (*.9)

Using Eqs. (A.8) and (A.9) and recalling that
p=2p-1, one gets finally Eq. (6.20):

y = /m flo . /1o
ER IS.=0) = /= /175~ 1.2533 oa

A.3. The Asymptotic Mean Range

Let Eq. (A.6) be rewritten as
i B v oAl ; :
E(Rn[Sn 0) = 2q 151 P P[S_;>i-1]/P[S =0].

It can be shown that this is a particular case of
the following more general result.

f-1 ’
ER,[S,=s) =25 +2q & . P[S,_;>s+i-1]/P[S =s];
i=1 5>0.

(A.10)

v -1 CeiiIT/PTS NgTs 540,
E(Rnlsn=s] = 2q 151 p P[Sn_i > -s+i-1]/P| n=s], <
= (A.11)
For very large values of n, one can use the
following approximation:

P[Sn>5]=P[5n_1>s]=P[Sn_2>s+l]=P[Sn”3>5+2]

SeinEP[B. 5

noja>s*it-1]
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i*

where i* 1is a value large enough so that p~ : 0,

Then Eqs. (A.10) and (A.11) simplify to

E(R,[S,=0)~2s + 2 P[S >s]/P[S =s]; s20, (A.12)

E(Rn[Sn=0]=2P[Sn1—s]/P[Sn=s]; 5<0. (A.13)

The mean range is given by
ER)) = E{E{Rn[SnJ} = ;s E(Rn]Sn=sJ-P[Sn=s].

Using Eqs. (A.12) and (A.13), after routine
transformations, one has

ER)) = 2E(|Sn|) - 2 P[S >0] (A.14)

where [S | denotes the absolute value of S,

Recalling that n

can be used again:
&

is large, the normal approximation

2
e xeo X/ p/Q)] 4

H

¢ 2
ER ) zg oy

3
2 /= /-P-;q; =

p=2p-1, one gets finally Eq.

Recalling that

(6.16) :
ER) ~ /38 /I . . 1 5058/ /2L
n m 1-p : 1-p
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An approach to distributions of the maximum accumu-
lated deficit of partial sums of independent random
variables is developed. For discrete random variables,
the distribution of the maximum accumulated deficit follows
from the theory of Markov chains, with one boundary state
absorbing and the other reflecting. The distribution of
the maximum accumulated deficit of partial sums of contin-
uous, independent random variables is obtained numerically.
New asymptotic results are derived. Similarities between
range and deficit analysis and Moran's theory of reserwirs
are pointed out, with the theory exposed extended to
serially correlated random variables. Practical applica-
tions are discussed and a brief note on the so-called
Hurst phenomenon is included.
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